
Instruction Duration Estimation by Partial Trace Evaluation

Matteo Corti
ETH Zurich

Departement Informatik
CH 8092 Z̈urich

Thomas Gross
ETH Zurich

Departement Informatik
CH 8092 Z̈urich

Abstract

Hard and soft real time systems require, for each process,
the worst-case execution time (WCET), which is needed by
the scheduler’s admission tests and subsequently limits a
task’s execution time during operation. A worst-case execu-
tion time analysis is usually performed in two distinct steps:
first the program is analyzed to extract semantic informa-
tion and determine maximal bounds on the number of iter-
ations for each basic block. In a second step the duration
of the different program’s instructions is computed with re-
spect to the used hardware platform. Modern systems with
preemption and modern architectures with non-constant in-
struction duration (due to pipelining, branch prediction and
different level of caches) hinder a fast and precise compu-
tation of a program’s WCET. We present a technique to ap-
proximate the instruction duration on modern processors
using precise block bounds. Instead of simulating the CPU
behavior on all the possible paths we apply the principle
of locality limiting the effects of a given instruction to a re-
stricted time allowing us to analyze large applications in
linear time.

1. Introduction

A central aspect of the worst-case execution time
(WCET) analysis is the computation of the various instruc-
tions duration for a given hardware platform. Modern ar-
chitectures feature several factors making the precise com-
putation of the instruction duration difficult: one or more
pipelines, several cache levels, instruction reordering and
branch prediction are an example. Systems with a dynamic
set of processes and a preemptive scheduler add an addi-
tional layer of difficulty since we are not able to predict
when a context switch will take place. Our approach to
WCET analysis consists in a two-phase analysis: a precise
and conservative semantic analyzer computes bounds for
the program’s basic blocks (see Section 2.1), while a sec-
ond tool, the instruction length estimator, computes an ap-
proximation of the WCET based on the maximal number of
block iterations specified by the first tool (see Section 3).

2. System overview
Our worst-case execution time approximator is com-

posed by two tools: a machine independent semantic ana-
lyzer and a language independent instruction duration esti-
mator. The static semantic analyzer is integrated as a mod-
ule in an ahead-of-time Java bytecode to native compiler.
We translate the bytecode to an internal representation in
static single assignment form (SSA) [3], and perform sev-
eral analyzes and optimizations. The static semantic ana-
lyzer is able to discover false paths, to bound the minimal
and maximal number of iterations for several loops, and to
discover the minimal set of targets for every method call.
The analyzer then includes the information about the pro-
gram’s behavior in the output assembler file in form of (text)
comments, which are processed by the instruction duration
estimator.

2.1. Semantic analysis

The semantic analyzer performs several steps to derive
the minimal and maximal number of iterations for each pro-
gram’s basic block. In a first phase we execute an abstract
interpretation pass to derive ranges of possible values for
local variables. Abstract interpretation is performed only on
paths which do not cross loop boundaries ensuring a fast ter-
mination of the algorithm. This limitation does not allow us
to bound loops, but we are able to reduce the set of possible
values for many local variables at a loop’s entry points: This
information is then used by the static loop bounder to better
understand the behavior of a loop’s induction variables. The
partial abstract interpretation pass is also useful to detect in-
feasible (or false) paths, which can be then excluded by the
worst-case execution time estimator. After this first pass we
bound the maximal number of loop iterations looking at the
behavior of the loop’s induction variables. Our technique
is based on the Florida method [5] to find the bounds for
the loop’s header block. Using precise structural informa-
tion we propagate the bounds to every basic block, taking
care of the different execution counts for every block in the
loop body. If a loop cannot be bounded, e.g., because it de-
pends on the value of a method parameter, we inline the
enclosing method and mark the caller for a further seman-



tic analysis pass. Specializing the unbounded methods we
are able to analyze the loops in the caller context, keep-
ing the loop bounding analysis and abstract interpretation
pass simple and not parametrized. Method inlinig is per-
formed recursively until either the loop is bounded or the
user specified maximum inline depth is reached. Loops that
cannot be bounded automatically (e.g., loops whose max-
imum number of iterations depends on the input set) are
identified and the user is required to annotate the code man-
ually specifying the bounds. For every dynamic call we de-
termine, with a whole program analysis, the set of possi-
ble targets. This excludes the possibility to use reflection,
which is not a desirable language feature in a predictable
environment. Although recursion has been shown to be ac-
ceptable with some constraints in real-time programs [1],
we limit our analysis to non-recursive programs by not al-
lowing cycles in the call graph. At the end of the semantic
analysis we embed the results in the class assembler repre-
sentation as textual comments. These annotations indicate
the control-flow graph structure, the minimal and maximal
number of iterations per block, the false paths and the pos-
sible targets for each method call.

2.2. Instruction duration estimator

The instruction duration estimator is a second tool that
takes as input the annotated assembler files from our com-
piler and analyzer and computes the WCET estimate on
the given hardware platform. The class files are parsed and
the control-flow graph is reconstructed from the embed-
ded comments. Since we do not allow recursion we traverse
the call graph in reverse topological order and estimate the
WCET of the program’s methods using partial trace evalu-
ation (see Section 3).

3. Partial trace evaluation
The duration of an instruction on a modern processor is

dependent on a lot of features such as data and instruction
caches, data dependencies, and branch prediction. On a dy-
namic system where the number and kind of running pro-
cesses is not known, and where the scheduler supports pre-
emption, it is infeasible to precisely predict the state of the
CPU at an arbitrary point in time. Several techniques try
to precisely compute the instruction duration for pipelined
systems [4, 14, 10, 8, 9, 16] while others extended the idea
to the instruction cache behavior prediction [4, 8, 13]. A
precise and conservative WCET estimation for highly dy-
namic systems with a preemptive scheduler normally re-
quires analyses using path enumeration, which do not scale
well for large applications. For this reason we implemented
a first WCET approximator for the PowerPC processors
where the length of each instruction was determined by
static information from the CPU vendor combined with
some run-time performance statistics [2]. Promising results
convinced us that a mixed approach using safe bounds on

the maximal number of basic block iterations combined
with a conservative approximation of the instruction length
could help to derive usable WCET estimation for large ap-
plications used in non-safety-critical soft real-time systems.

3.1. Locality

Our approach tries to compute a fair estimation of the
instruction duration without a precise and complete knowl-
edge of the set of running processes on systems which sup-
port task preemption. We assume that the effects of an in-
struction on the pipeline and caches will fade over time and
that they will be no more relevant after a certain number
of executed instructions. In other words the effects on the
caches and pipelines of an instructioni on a given program
trace are relevant only for a limited set ofn instructions,
wheren is an arbitrary number defined experimentally. For
every possible execution trace going through an instruction
i we define a partial trace as the set of the lastn instruc-
tion beforei on this particular trace. Using the principle of
locality a partial trace also defines the set of instructions
that could influence the duration ofi on the given execu-
tion trace. The duration of an instructioni on a given partial
tracet (duration(i, t)) is computed simulating the instruc-
tion cache and pipelines behavior for the given set ofn in-
structions and looking at the number of cycles needed to ex-
ecutei (See 3.2). We defineT (i, n) to be the set of unique
partial traces of lengthn that end ini (i.e. i is the last in-
struction of the partial trace). We define the WCET of an in-
structioni as:WCET (i) = maxt∈T (i,n) (duration(i, t)) .
I.e. we compute the duration ofi on every partial trace of
lengthn which ends oni and we conservatively consider the
worst case only. To limit the number of traces that have to
be simulated, some optimizations are possible. Partial sim-
ulation results (e.g., the state of the pipeline) are cached and
can be reused if the initial part of the two traces is the same.
This is particularly effective if we force traces to begin at
basic block boundaries. Furthermore the same trace simula-
tion can be extended to the following instructions as long as
no jumps are encountered.

3.2. Partial trace simulation

To simulate the instruction cache and pipelines behavior
of a partial trace we implemented a basic simulator using
a simplified Intel Pentium II processor [6] model. For ev-
ery clock tick we evaluate the state of the different CPU
units keeping track of the instructions we are interested
in. The following paragraphs describe which processor el-
ements are considered in the model and how our simulator
handles them.

Pipeline The fetch and decode unit fetches one 32-byte
cache line from the instruction cache and decodes it to the
internal micro-ops. Every IA-32 instruction is decoded to
one or more pre-programmed micro-ops which are then
passed to the instruction pool. The unit can decode up to six



mirco-ops per clock tick. The instruction pool holds from 20
to 30 micro-ops, which are then dispatched to the correct ex-
ecute unit in any order. The Pentium II processor has several
execution units divided among five ports (pipelines). Sev-
eral execution units can execute micro-ops on each pipeline,
but only one micro-op per cycle can be fed to a port. To
keep the simulation fast and simple the current implemen-
tation does not precisely model the five execution pipelines
and we do not perform a data dependency analysis: we es-
timate the latency of every instruction with heuristic meth-
ods. The retirement unit has the task to reorder the micro-
ops and can process up to three instructions per clock tick.

Memory operations Partial trace simulation does not al-
low to simulate the data cache behavior since at the be-
ginning of the instruction sequence the memory and data
cache status are unknown. For this reason we do not cur-
rently model data dependencies in memory and we assume
that a write to a store buffer will not influence the instruc-
tion duration. Assuming that the system has enough mem-
ory to handle the process and that no swap space is present,
our model uses a statistical approximation of the memory
accesses, computing the cost of a read in the following way:

cread = pL1hit · cL1 + (1 − pL1hit) · (c′ + cL2hit)
c′ = pL2hit · cL2 + (1 − pL2hit) · (cM + cL2hit).

WherepLnhit is the probability to have a hit on the cache
leveln, cLn is the cost of a cache hit on leveln andcM is the
cost of a memory read. The values forcL1,cL2 andcM are
determined statically by the Intel specifications [6] while
the global hit probabilities for the whole program are de-
termined statistically by measurements performed on a test
run of the analyzed application.

Branch prediction To estimate the effects of branch pre-
diction we use the bounds on the maximum number of basic
block iterations computed with the static semantic analysis
(see Section 2.1). We consider the probability of a branch
from a blockb to a blocks as:

pbranch(b,s) =
max(iteredge(b,s))

max(iterb)

where iteredge(b,s) is the number of times we will jump
from b to s and iter(b) is the number of times that block
b will be executed. Comparing the expected CPU behavior
described in the documentation with our predicted branch
direction we can estimate how often a branch misprediction
will occur.

3.3. Longest path

Once we have the worst-case execution time of each in-
struction we can easily compute the duration of a basic
block b as the sum of the durations of all the instructions
i it contains:WCET (b) =

∑
i∈b WCET (i). Since, due

to pipelining, an instruction could be spread over the exe-
cution of two basic blocks we define the duration of a basic
block as the time from the beginning of its first instruction
to the clock tick before the execution of the first instruc-
tion of the next block. To be able to compute the longest
path from a method source to the method exit we have to
transform the control flow graph representation removing
cycles: For every loop we remove the back edges and re-
place them with an edge to all the possible loop’s exit points.
We then update the weight of each loop’s block, multiply-
ing it with the block’s maximum number of iterations (the
initial weight of a block is defined as its worst-case execu-
tion time). We obtain an acyclic representation of the con-
trol flow graph that retains information about block itera-
tions in the form of nodes weights. Note that cycles are re-
moved from the representation only, and that we do not per-
form any loop unrolling on the actual code. To find out the
longest path from the entry to the exit block of the graph
which is not a false path, we use a best-fit algorithm based
on what presented in [15] which is able to perform the path
enumeration in logarithmic time when the number of false
paths is small. Method calls are handled by traversing the
call graph in depth-first order and inserting the maximum
duration of all the possible callees at the corresponding call
site.

3.4. Complexity

The limited length of the partial traces limits the num-
ber of paths, and consequently the number of instructions,
that we have to consider for simulation. For a program
with N instructions andB basic blocks our analysis needs:
O(2n·N

B ·N) steps. Sincen (the length of a partial trace) and
N
B (the average number of instructions per basic block) are
constant, the total running time is in the asymptotic case lin-
ear.

4. Results
Testing the soundness of a WCET predictor is a tricky

issue since, for complex examples, the real maximum ex-
ecution time is difficult or even impossible to measure. To
compare the estimated values with the measured time we
must force the execution of the longest path, which is not
normally known. The easiest way to validate such a tool is
therefore the comparison of the results for small known syn-
thetic applications where the real longest path is known or
computable by hand. The first half of Table 1 shows the es-
timated WCET and the longest measured execution time for
a set of small benchmarks. For these small tests we know,
by hand, which is the longest path and we can easily force
its execution. This means that we can directly compare our
estimation to the longest measured run time, which corre-
sponds to measured worst-case execution time of the bench-
mark. The results are encouraging and show the soundness
of our technique: We are able to compute a conservative



estimation of the WCET with errors less then 25% in a
fast and simple way. All the tests where performed on a 1-
GHz Intel Pentium III-based PC. The longest observed run-
ning time were measured by using the CPU on-chip perfor-
mance counters. The second half of Table 1 shows the re-
sults for some bigger applications. JavaLayer [7] is a pure
Java library that decodes, converts and plays MP3 files (in
our benchmark we decode some sample MP3s to raw audio
data). SciMark [11] is a composite Java benchmark measur-
ing the performance of numerical kernels occurring in sci-
entific and engineering applications (FFT, SOR, sparse ma-
trix multiply, Monte Carlo integration and dense LU matrix
factorization) and 201 compress (we replaced the file in-
put with a 4KB chunk of random bytes) is part of the SPEC
JVM98 benchmarks [12]. In case of big applications we

Benchmark Measured Estimated
Division 1.545 · 109 1.400 · 109 (10.351%)
Jacobi 1.075 · 1010 8.788 · 109 (22.351%)
MatrixInversion 1.553 · 109 1.419 · 109 (9.402%)
MatrixMult 2.732 · 109 2.667 · 109 (2.448%)
201 compress 9.45 · 109 1.11 · 1010 (117%)

javalayer 2.67 · 109 1.30 · 1010 (487%)
scimark2 2.47 · 1010 1.42 · 1011 (579%)

Table 1. WCET estimations.

are not able to compare our estimation with the measured
WCET since the input generating the longest execution time
is not known and we cannot force it at run time. A man-
ual inspection of the code is not feasible due to the size of
the test applications (JavaLayer has 10’000 lines of code).
We run the program with different input sets and we com-
pare our estimation with the maximum measured process
execution time. For this three applications we compute con-
servative estimations which are not too far from the mea-
sured WCET. To validate our locality principle we run sev-
eral tests of the same application with increasing values of
n (the length of a partial trace in instructions). After a cer-
tain value (around 50–100 instructions) the total estimated
length does not vary any more. This validates our princi-
ple of locality showing that the effects of an instruction are
limited to a small part of the analyzed program.

5. Concluding remarks
This paper describes an approach to compute a realistic

estimation of the WCET for large applications on highly dy-
namic systems with a preemptive scheduler. The maximum
number of iterations for each basic blocks is precisely com-
puted by a semantic analyzer, while the length of the single
instructions is approximated using the principle of locality,
limiting the effects of an instruction on pipelines and in-
struction caches to a short program snippet (a partial trace).
We are able to compute a fair estimation of the WCET in
linear time allowing to handle big and complex applica-

tions. The tool has room for improvements especially in
the instruction cache and pipeline model, but this prototype
shows that is possible to get usable results for big analyzed
programs in a fast and effective way.

6. Acknowledgments
This work was funded, in part, by the NCCR “Mobile

Information and Communication Systems”, a research pro-
gram of the Swiss National Science Foundation, and by a
gift from Intel’s Microprocessor Research Laboratory.

References
[1] J. Blieberger and R. Lieger. Real-time recursive procedures.

In Proceedings of the 7th EUROMICRO Workshop on Real-
Time Systems, pages 229–235, Odense, Denmark, June 1995.

[2] M. Corti, R. Brega, and T. Gross. Approximation of worst-
case execution time for preemptive multitasking systems. In
Proc. of the ACM SIGPLAN Workshop on Languages, Com-
pilers, and Tools for Embedded Systems (LCTES), Vancou-
ver, Canada, June 2000.

[3] R. Cytron et al. Efficiently computing static single assign-
ment form and the control dependence graph.ACM Trans. on
Programming Languages and Systems, 13(4):451–490, Oc-
tober 1991.

[4] C. Healy, R. Arnold, F. Mueller, D. Whalley, and M. Har-
mon. Bounding pipeline and instruction cache performance.
IEEE Trans. Computers, 48(1):53–70, Jan. 1999.

[5] C. Healy, M. Sj̈odin, V. Rustagi, and D. Whalley. Bounding
loop iterations for timing analysis. InProc. 4th Real-Time
Technology and Applications Symp., pages 12–21, Denver,
Colorado, June 1998.

[6] Intel Corporation.Intel Architecture Optimization, Reference
Manual, 1999.

[7] JavaZOOM. Javalayer.
http://www.javazoom.net/javalayer/javalayer.html.

[8] Y.-T. Li, S. Malik, and A. Wolfe. Cache modeling for real-
time software: Beyond directed mapped instructions caches.
In Proc. 17th IEEE Real-Time Systems Symp., pages 254–
263, Washington, D.C., Dec. 1996. IEEE.

[9] S.-S. Lim, J. Han, J. Kim, and S. Min. A worst case timing
analysis technique for multiple-issue machines, Dec. 1998.

[10] T. Lundqvist. A WCET Analysis Method for Pipelined Mi-
croprocessors with Cache Memories. PhD thesis, Chalmers
Univ. of Technology, G̈oteborg, Sweden, June 2000.

[11] B. Pozo, R. Miller. Scimark2.
http://math.nist.gov/scimark2/.

[12] The Standard Performance Evaluation Corporation. SPEC
JVM98 Benchmarks. http://www.spec.org/osg/jvm98, 1996.

[13] H. Theiling and C. Ferdinand. Combining abstract interpre-
tation and ILP for microarchitecture modelling and program
path analysis. InProc. 19th IEEE Real-Time Systems Symp.,
pages 144–153, Madrid, Spain, Dec. 1998. IEEE.

[14] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and pre-
cise WCET prediction by separated cache and path analyses.
Real-Time Systems, 18(2/3):157–179, May 2000.

[15] S. Yen, D. Du, and G. S. Efficient algorithms for extracting
the k most critical paths in timing analysis. In A. Press, ed-
itor, Proc of the 1989 26th ACM/IEEE Conf. on Design Au-
tomation, pages 649–654, Las Vegas, NV, June 1989.

[16] N. Zhang, A. Burns, and M. Nicholson. Pipelined proces-
sors and worst case execution times.Real-Time Systems,
5(4):319–343, Oct. 1993.


