

Contents
Contents i

List of figures v

List of tables vii

1 Introduction 1

1.1 Abstract 1
1.2 XOberon 2
1.3 PowerPC 604e overview 3

2 Problem statement 7

3 Source-code analysis 9

3.1 Preconditions 9
3.2 Changes in the Oberon language 10
3.3 BOUND 11
3.4 LENGTH 12
3.5 Intermediate representation 13
3.6 Exceptions 14
3.7 Procedure calls 14
3.8 Inline procedures 14
3.9 Imported procedures 15
3.10 Loop detection 15
3.11 Loop termination 16
3.12 User feedback 19
3.13 Loop elimination 20
A Real-Time Profiler/Analyser for XOberon/PowerPC i

Contents

4 A fine-grained approach to the duration computation 23

4.1 Hardware and system preconditions 23
4.2 PowerPC 604e Performance Monitor 25
4.3 Cycles per instruction 27
4.4 Instruction length computation 29
4.5 Finite Cache Effect 31
4.6 Dispatch stalls 31
4.7 Execution units stall cycles 33
4.8 Instruction parallelism 36
4.9 Some remarks on the instruction length computation 37

5 Results 39

5.1 Test strategy 39
5.2 Timing correctness when the longest-path trace is known 40
5.3 Matrix multiplications and array maximum 41
5.4 Whetstone results 43
5.5 Runge–Kutta method 44
5.6 Polynomial evaluation 45
5.7 Distribution counting 46
5.8 Drivers timing 46
5.9 LaserPointer 47
5.10 Hexaglide 48
5.11 Related work 48
5.12 Oberon language changes 49
5.13 Optimization performance 49
5.14 Penalties when using the performance monitor. 50
5.15 Real-time Oberon programs 50

6 Conclusions and future directions 53

6.1 Conclusions 53
6.2 Future directions 54

A File formats 55

A.1 Processor description file 55
A.2 Performance monitor information file 56

B Implementation problems 57

B.1 Compiler integration 57
B.2 Constant propagation and reaching definitions 57
B.3 Performance monitor 58
ii A Real-Time Profiler/Analyser for XOberon/PowerPC

Contents

C User interface 59

C.1 Oberon Compiler 59
C.2 PowerPC Performance Monitor 60

D Profiler/Analyser Structure 61

D.1 List of compiler changes by module 61

Reference list 63

Acknowledgments 67
A Real-Time Profiler/Analyser for XOberon/PowerPC iii

Contents

iv A Real-Time Profiler/Analyser for XOberon/PowerPC

List of figures
FIGURE 1. 604e block diagram 4

FIGURE 2. Pipeline diagram 5

FIGURE 3. Compiler structure 13

FIGURE 4. Parse tree structure 15

FIGURE 5. Loop structure 17

FIGURE 6. Loop elimination 21

FIGURE 7. PowerPC 604e Performance Monitor implementation 25

FIGURE 8. Instruction pipelining 30

FIGURE 9. Dependencies in the reservation stations, code example 33

FIGURE 10. Example of test-strategy validation 40

FIGURE 11. The structure of the Whetstone benchmark 44
A Real-Time Profiler/Analyser for XOberon/PowerPC v

List of figures

vi A Real-Time Profiler/Analyser for XOberon/PowerPC

List of tables
TABLE 1. Iterations computing rules 18

TABLE 2. Simplification example 19

TABLE 3. Execution latencies and throughput 29

TABLE 4. Test results 41

TABLE 5. Test data 42

TABLE 6. LaserPointer results 47

TABLE 7. Hexaglide results 48

TABLE 8. Changes in the source code of existing applications 49

TABLE 9. Performance monitor data 50
A Real-Time Profiler/Analyser for XOberon/PowerPC vii

List of tables

viii A Real-Time Profiler/Analyser for XOberon/PowerPC

CHAPTER 1 Introduction
om
iour.

 con-
xecu-
t the

axi-
ften
r can
tion,
id of
s.

 on
 this
st set
g to

er’s

 to
1.1 Abstract

The most significant difference distinguishing real-time systems fr
other computer systems is the importance of correct timing behav
Each hard real-time task has a computation deadline1 associated with it;
the deadline has to be met, otherwise the real-time system fails. This
straint must always hold, even in the worst case, i.e. when the task's e
tion takes a maximum amount of run time. It is therefore obvious tha
maximum execution time, or the maximum duration2, of a task is of great
importance for the construction and validation of real-time systems.

In many classic articles about scheduling in real-time systems, the m
mum execution time is assumed to be known; unfortunately this is o
not the case. The deadline is something an application programme
easily specify, because it is usually part of the real-time implementa
but the duration is very hard to compute: it is often guessed, with the a
experience, and then adjusted according to the results of various test

A standard, empiric method, consists in actually running a program
representative test data, and measure its execution time. While
approach is clearly useful, it has the same flaws as debugging: the te
may not cover the whole input-domain, maybe leaving the one yieldin
the worst execution time untested.

1. The deadline is the point in time where the task has to be completed, from the programm
point of view.

2. The duration of a task represents the amount of foreground time that the processor needs
completely execute it.
A Real-Time Profiler/Analyser for XOberon/PowerPC 1

Introduction

ati-
 at

od-
tical
istic

tool
time
d-up
lica-

ting
es,
 and
ty of
plete
tible
for

rm
e its
ten-
ons
ow
ure is
tion
he
 run-

sys-
ys-

eral
a-

eron
 and
rsion
he
The ideal solution would be a profiler/analyser that could autom
cally determine the maximum execution time of a given program
compile time, but unfortunately this will remain a chimera. The m
ern operating systems’ and processors’ complexity, and theore
limitations, prevents us from computing the exact and determin
maximum duration of a given process.

The goal of this work, is to empower the user with an automatic
that computes a good approximation of the maximum execution
of a given task. The profiler/analyser should automatize and spee
one of the most error-prone developing phase of a real-time app
tion, thus reducing the probability of faults.

We strongly believe, that the user interaction, in tools for predic
the timing behaviour of programs coded in high level languag
should be minimized. Real-time systems are used in research
industry fields, where noncomputer scientists are the vast majori
the users and programmers. To expect from the user a com
knowledge of the underlying system and hardware is not compa
with the goal of XOberon, which is about providing a framework
implementators looking for a rapid application development tool.

The work is divided in two major and distinct parts. First, we perfo
a syntactical analysis of the program source in order to retriev
structure, using compiler optimization techniques. Particular at
tion is paid to the automatic computing of the number of iterati
within a loop, allowing the transformation of the program’s data fl
into an acyclic graph. In a second phase, the processor architect
analysed for computing the length of a code block. The instruc
length is refined with run-time statistical information, to bring t
worst-case results to values that one can expect when actually
ning the program.

1.2 XOberon

We integrated our tool in the XOberon hard-real–time operating
tem and compiler [1, 2]. XOberon is a hard real-time operating s
tem developed at the Institute of Robotics (IfR), Swiss Fed
Institute of Technology in Zurich, for the control of high-end mech
tronic products. It is loosely based on the Oberon System [3]. Ob
refers simultaneously to a modular, extensible operating system
to an object-oriented programming language. The most recent ve
of XOberon is written in Oberon-2 [4], an improved revision of t
2 A Real-Time Profiler/Analyser for XOberon/PowerPC

PowerPC 604e overview

essor

al-
nd
pat-
s

o the
for
the

ine-
 the
duler
dline
uler

ed
ich

 this
con-
.

 the
vid-
 16,
gle-

truc-
ecu-
t can

Oberon language, and takes advantage of the PowerPC proc
architecture.

The system is particularly suited for the modelling of complex re
time applications, given its modularity, clean interface definitions a
the presence of a dynamic loader, which checks for interface com
ibility. The very fast compiler, along with the dynamic loader allow
for short edit–compile–run cycles.

The operating system presents a clear, object-oriented interface t
programmer. The framework provides high level abstractions
most of the real-time programming problems. XOberon solves
majority of the usual real-time issues by implementing a deadl
driven schedule with admission testing. The user must provide
duration and the deadline of a submitted task. The real-time sche
preallocates processor time as specified by the duration/dea
ratio. If the sum of all these ratios remains under 1.0, the sched
accepts the task, otherwise it will be rejected.

The compiler, where the tool was integrated, is a slightly modifi
version of the PowerPC MacOberon Compiler (Oberon-2), wh
finds its roots in the original Ceres Oberon Compiler [3].

1.3 PowerPC 604e overview

This section describes the Motorola PowerPC 604e [12] used for
work. This small overview presents the processor characteristic
cerned by this work, such as the processor and pipeline structure

The 604e is an implementation of the PowerPC1 family of reduced
instruction set computer (RISC) microprocessors. It implements
PowerPC architecture as it is specified for 32-bit addressing, pro
ing 32-bit effective (logical) addresses, integer data types of 8,
and 32 bits, and floating-point data types of 32 and 64 bits (sin
and double-precision, respectively).

The 604e is a superscalar processor capable of issuing four ins
tions simultaneously. As many as seven instructions can finish ex
tion in parallel, because the 604e has seven execution units tha
operate concurrently. These units are:

• Floating-point unit (FPU)

• Branch processing unit (BPU)

1. Performance Optimized With Enhanced RISC
A Real-Time Profiler/Analyser for XOberon/PowerPC 3

Introduction

n be
egis-
its

any as
ep-

med
is
ters

ction
ula-

sepa-
04e
ka-

pro-
tion
• Condition register unit (CRU)

• Load/store unit (LSU)

• Two single-cycle integer units (SCIUs)

• One multiple-cycle integer unit (MCIU)

Instructions can execute out of order, and execution results ca
made immediately available to subsequent instructions through r
ter renaming. However, the completion unit retires (i.e. it comm
results to architectured registers such as FPRs and GPRs) as m
four instructions per clock cycle in order, ensuring a precise exc
tion model. To support out-of-order execution, registers are rena
to prevent write-after-read, and write-after-write conflicts. Th
renaming is accomplished by the mapping of architectural regis
into physical ones.

The PowerPC 604e microprocessor uses dynamic branch predi
to improve the accuracy of instruction prefetching, and can spec
tively execute through two unresolved branches.

FIGURE 1. 604e block diagram

The 604e has separate memory management units (MMUs) and
rate 32-Kbyte on-chip caches for instructions and data. The 6
implements two 128-entry, two-way set associative translation loo
side buffers (TLBs), one for instructions and one for data, and
vides support for demand-paged virtual memory address transla
4 A Real-Time Profiler/Analyser for XOberon/PowerPC

PowerPC 604e overview

e the

. The
ory

ome
 sin-
ruc-
asic

 one
cle.

orm-
and variable-sized block translation. The TLBs and the caches us
least-recently used (LRU) replacement algorithm.

The 604e has a 64-bit external data bus and a 32-bit address bus
604e supports single-beat and burst data transfers for mem
accesses and memory-mapped I/O accesses.

The master instruction pipeline of the 604e has six stages. S
instructions combine the completion and write-back stages into a
gle cycle. Some instructions (load, store, and floating-point inst
tions) flow through additional execution pipeline stages. The six b
stages of the master instruction pipeline are as follows:

• Fetch (IF)

• Decode (ID)

• Dispatch (DS)

• Execute (E)

• Completion (C)

• Write-back (W)

FIGURE 2. Pipeline diagram

Because the CRU shares the dispatch bus with the BPU, only
condition register or branch instruction can be issued per clock cy
Both units (CRU and BPU) are treated as a single one by the perf
ance monitor.
A Real-Time Profiler/Analyser for XOberon/PowerPC 5

Introduction

6 A Real-Time Profiler/Analyser for XOberon/PowerPC

CHAPTER 2 Problem statement
an
able
mine,
 the

s of
ams.

nded
th in

k the
r. It
cture,
r to
put-
can-
l data
the
tion
given

 they
rma-
 the

e per-
ecial
The goal of the work is to build an automatic tool for predicting
approximation of the maximum duration of a task. The tool has to be
to analyse the task’s source code, retrieve its structure and deter
when possible, the number of simple loop iterations. It should compute
number of repetitions for all the loops that are reconducible to a FOR con-
struct, with constant starting, ending point and increment. This clas
loops represent the vast majority of the cycles used in real-time progr

Once the structure of the program is known and all the loops are bou
(automatically or by the user), the tool should compute the longest pa
the program’s data flow graph, representing the maximum duration.

To achieve the longest path computation, the tool must be able to trac
length of the single instructions generated by the Oberon-2 compile
should use the static processor characteristic described by its archite
in conjunction with statistical data about the task’s behaviour in orde
approximate the instruction length, to a meaningful value. When com
ing the maximal program duration, the worst case instruction length
not be considered, because it has no practical meaning. Statistica
used for this approximation, include the instructions’ stall cycles,
instruction parallelism, and the memory effects. The gathered informa
should summarize how the processor behaves when executing a
task.

Because these data vary in a significant way among different tasks,
must be collected separately for each profiled program. For this info
tion to be collected, a performance monitor should be integrated in
XOberon System, capable of sampling data on a per-task base. Th
formance monitor should take advantage of the PowerPC 604e sp
monitoring hardware.
A Real-Time Profiler/Analyser for XOberon/PowerPC 7

Problem statement

ing,
uler.
ntal
ying
.

The computed approximation should have a practical mean
describing the duration of the tasks to be submitted to the sched
The various approximations should be refined with an experime
strategy. The error result of various tests should be minimized, tr
to avoid predictions falling under the measured run-time duration
8 A Real-Time Profiler/Analyser for XOberon/PowerPC

CHAPTER 3 Source-code analysis
f the
e of
data
iva-

, or
affect

 the
tion

axi-
hen

sole
ximal

um

d for
sid-
In this chapter we describe the first phase of the work: the analysis o
program source, performed to extract its cycle-free data flow, by us
compiler optimization techniques. The longest path of the its acyclic
flow, weighted with lengths of each instruction in basic blocks, is equ
lent to the maximal duration of the program.

3.1 Preconditions

In order to correctly compute the maximum execution time of a task
maximal duration, some strong preconditions have to be met. These
the program structure and the underlying hardware.

Definition 1 (Application Specific Maximum Execution Time MAXTA)
The Application Specific Maximum Execution Time of a program is
maximum time needed to execute this program in the given applica
context.

Note that the application-specific maximum execution time is the m
mum CPU time that the task can actually consume, i.e. its duration. W
trying to compute the timing behaviour of a task by means of the
source code analysis, one can only derive the upper bound for its ma
time consumption. Hence the need for defining the calculated maxim
execution time.

Definition 2 (Calculated Maximum Execution Time MAXTC) The Cal-
culated Maximum Execution Time of a task is the least upper boun
the MAXTA of this task that can be derived from the program code, con
ering the worst timing behaviour of the underlying hardware.
A Real-Time Profiler/Analyser for XOberon/PowerPC 9

Source-code analysis

. The
fol-

rox-

truc-
ces-

ata
ility

e
ute
 or

i-

gth

age
 only
fore

se it
he
MAXT C, as can be seen, is too high to have a practical meaning
Approximated Maximum Execution Time is therefore defined as
lows.

Definition 3 (Approximated Maximum Execution Time MAXT)
The Approximated Maximum Execution Time of a Tasks is an app
imation of the MAXTC value with a given processor behaviour.

The approximations are needed to determine the length of ins
tions, this being not deterministic in a pipelined, superscalar pro
sor with deep memory hierarchies.

The control flow of a program obviously depends on the input d
and global variable settings, determining the theoretical impossib
to compute the MAXTC for any program. This is a corollary of th
termination problem, which states that it is impossible to comp
whether a program will terminate in a finite time with a given input
not [5].

Theorem 1 (Termination problem) The termination problem
(H := {<M> ω | M terminates on ω}) is not recursive.

If it is impossible to compute if a program will terminate, it is ev
dent, that its length is not always determinable.

The problems that prevent us from computing the maximum len
are the following:

• The number of loop iterations is not known.

• The depth of recursion is not known.

• Procedure variables instances are not known.

3.2 Changes in the Oberon language

We introduced some additions and limitations in the Oberon langu
to facilitate the source code analysis. The changes are effective
in real-time tasks, specified as compiler parameters. It is there
allowed to have mixed (real-time and non-real–time) modules.

The changes, in detail, are:

• Recursive procedures, direct or indirect, are not allowed becau
is generally impossible—or only with a great effort—to extract t
recursion depth.
10 A Real-Time Profiler/Analyser for XOberon/PowerPC

BOUND

 in

the

 of

gle

ing
ent
at a
dard
 the

 the

um
• No NEW is allowed, because this primitive is not bound neither
time nor in space.

• The loops that are not reconducible to a FOR construct have to be
bounded—that is, the programmer must explicitly specify
maximal number of iterations.

• Procedure variables are not allowed, with the exception
Oberon-2 methods.

• The user has the possibility to specify the duration of a sin
statement.

We added two new Oberon constructs, the first for loop bound
(BOUND), the second to specify the length of a particular statem
(LENGTH). Both new keywords are enclosed in comments, so th
modified real-time program, can also be parsed by a stan
Oberon-2 compiler. The changes to the Oberon-2 syntax [4] are
following.

Changes in the Oberon syntax

WhileStatement = WHILE Expression DO [(*BOUND
Number*)] StatSequence END.

RepeatStatement = REPEAT [(*BOUND Number*)]
StatSequence UNTIL Expression.

LoopStatement = LOOP [(*BOUND Number*)]
StatSequence END.

ForStatement = FOR ident Ò:=Ó Expression TO Expression [BY
Expression] DO [(*BOUND Number*)] StatSequence
END.

statement = [[(*LENGTH Number*)] assignment | [
(*LENGTH Number*)] ProcedureCall | IfStatement |
CaseStatement | WhileStatement | RepeatStatement
| LoopStatement | ForStatement | WithStatement | EXIT
| RETURN [expression]].

3.3 BOUND

Our analyser is able to compute the number of loop iterations for
majority of cycle structures transformable in FOR constructs. For all
of the other loops, the programmer has to specify the maxim
number of iterations, as in the following example:

EXAMPLE 1. BOUND

WHILE ~done DO (*BOUND 1000*)
GetData()

END;
A Real-Time Profiler/Analyser for XOberon/PowerPC 11

Source-code analysis

ined
n is
t.

nt;
eci-

e is
tion
than
 This

he
it is
ate-
oc-

con-

This must be done, for every loop whose termination is determ
by an input value, or a device signal, or the termination conditio
too complex to be automatically analysed with a reasonable effor

The BOUND construct does not only act as a compile-time hi
indeed code is emitted for a run-time check ensuring that the sp
fied value will not be exceeded during execution. A new variabl
introduced, and incremented at each loop iteration. In the termina
condition a new check is inserted, and if the variable is greater
the bound value a run-time exception is generated (Oberon trap).
allows the user to detect an incorrectly specified value.

EXAMPLE 2. BOUND code generation1

3.4 LENGTH

The LENGTH construct is indispensable to profile method calls. T
type of the object is not known at run time, and consequently
impossible to compute the length of its methods. With this new st
ment it is possible to specify the maximum method duration in pr
essor cycles.

EXAMPLE 3. LENGTH use

FOR i := 0 TO 1000 DO
(*LENGTH 400*) portObj.GetData()

END;

1. This scheme represents a snapshot of the compiler’s parse tree for a WHILE loop.
Nwhile, Nif and Ntrap represent the internal structures corresponding to the Oberon
structs WHILE, IF … THEN … ELSE … END, and HALT. The dotted squares are newly
inserted when a BOUND is specified.

Nwhile

Expression

StatSequence

@tmp := 0

Nif

@tmp ≥ bound Ntrap

INC(@tmp)
12 A Real-Time Profiler/Analyser for XOberon/PowerPC

Intermediate representation

 is no
tion.

ally
h the
 the
ct-
oce-
hod)

repre-
 well
ode

 file
 and
asic
 for
ere

tion
used
nly
 the

sis,
erally
The length value cannot be checked at run time, because there
way to implement a cycle counter and checker after each instruc
Particular attention is therefore required.

The use of object orientation in XOberon real-time tasks is usu
moderate; these tasks are programmed in a procedural style wit
exception of drivers software, dramatically reducing the need of
LENGHT keyword. A similar approach is not suited for plain obje
oriented programming such as Smalltalk or Java, where the pr
dural programming is not allowed, and were each procedure (met
call should be prefixed by the length specification.

3.5 Intermediate representation

The XOberon compiler has a parse tree used as an intermediate
sentation between its front end and its back end. This structure is
suited for the existing Oberon compiler, which generates native c
for the PowerPC and OMI object files (a portable Oberon binary
[6]). The parse tree, however, is not suited for data flow analysis,
therefore we introduced a new intermediate representation with b
blocks. The old intermediate representation was not substituted
reasons of practicality and time (a complete compiler rewrite w
necessary) but is used in conjunction with the new one.

FIGURE 3. Compiler structure

The basic block intermediate representation contains informa
about the program structure but is not complete and can not be
for the code generation (for simplicity reasons). A basic block o
contains links to the parse tree node, reducing its complexity and
time needed for the implementation.

The new dual structure is practical and useful for data flow analy
but has the drawback that code changes in the parse tree are gen
very difficult if not impossible.

Source
Code

Object
File

Parse Tree

Basic
Blocks

Compiler
A Real-Time Profiler/Analyser for XOberon/PowerPC 13

Source-code analysis

be
s true
n. If
ation
 and

 The
bles
this
ating

fired
in

d the
PU

stored
 the

 not
roce-
 per-
to the
 the

ures
pro-
tions

pro-
d, and

flow
l of
3.6 Exceptions

In a MAXT analysis the time for exception handling should
inserted at each statement where an exception may occur. This i
for exceptional conditions that do not cause a program terminatio
a trap is generated, the program is halted, and the maximal dur
computation makes no sense any more. It would be useless
wrong to add the time for a divide by zero trap at each division.

Each XOberon task, starts up with no FPU processor support.
first floating point operation fires an exception. The system ena
the FPU and the control is returned to the task. The time for
exception is added at the beginning of each procedure using flo
point arithmetics.

This is obviously a worst case analysis, since the exception is
only once. Unfortunately there is not the possibility to know
advance, if a task using the procedure has already generate
exception. Anyway the number of instruction used to enable the F
is very small resulting in a minimal overhead.

3.7 Procedure calls

The registers that are used in given procedure are saved and re
in its prolog and epilog code respectively, in order to preserve
caller procedure state.

The code for saving, and restoring the floating-point registers is
generated for each procedure but is part of the system. When a p
dure frame is created, a branch to a special memory area is
formed, the registers are saved and the program branches back
original place. Although these instructions are not generated by
compiler, they must be computed in the longest path analysis.

3.8 Inline procedures

The Oberon compiler allows the use of assembled code proced
(inline procedures). They are used in the system’s and driver’s
gramming, because they enable the generation of special instruc
not supported by the compiler. If the structure of the used inline
cedures is sequential, i.e. there are no branches, they are decode
the instructions are added to the corresponding basic block.

The presence of branches would require decoding with data
analysis of the machine code, which would fall beyond the goa
14 A Real-Time Profiler/Analyser for XOberon/PowerPC

Imported procedures

e are
ns,

ding
ted
ati-

on-

n of
eo-

he
pro-

he
on

hole
nti-

ator

 built
this work. This is not a severe limitation, because these procedur
generally made up of a small member of sequential instructio
which cannot be emitted by the compiler.

3.9 Imported procedures

The length of imported procedures is added to the correspon
block with the aid of a second symbol file containing their predic
duration. The use of a second file maintains the symbol file comp
bility.

The structure of the additional symbol file is very simple and no c
sistency checks are performed.

3.10 Loop detection

One of the biggest issue of source code analysis is the eliminatio
loops to transform the data flow in an acyclic graph. Due to the th
retical impossibility to compute the number of iterations for all t
possible loops, this value, in previous works [7, 8], was asked to
grammer, and included in program source with special keywords.

The simplicity of real-time tasks, implies that the majority of t
loops has a FOR-like structure that permits an automatic computati
of the number of iterations.

The parse tree simplifies the task of loop detection, because the w
information on the program structure is preserved. Loops are ide
fied by special nodes (Nwhile, and Nrepeat), with information about
their back edge. This avoids the construction of the blocks’ domin
tree.

FIGURE 4. Parse tree structure

With the data stored in the parse tree nodes, loops are easily
using the following algorithm.

Nwhile

Expression StatSequence

Node information:
• back edge
• user bounded?
• computed repetitions
• end node
• termination info
• basic block
A Real-Time Profiler/Analyser for XOberon/PowerPC 15

Source-code analysis

, are
ack
guage

ow it
ingle

on-

m.
con-
gate
sible.
ted at
her.
e tree

s-
nec-
ons is
ALGORITHM 1. Loop detection

in: head of the loop and back edge
out: all the blocks in the loop

stack := ∅ ;
L := head(back edge) ∪ tail(back edge);
push(tail(back edge));
WHILE stack ≠ ∅ DO

bb := pop();
FOREACH p := pred(bb) DO

IF p ∉ L THEN
L := L ∪ p;
push(p)

ENDIF
ENDFOR

ENDWHILE

All the predecessors of the block, where the back edge starts
recursively added to the loop, until the block at the head of the b
edge has been reached. This works only because the Oberon lan
guarantees that the program’s flow graph is always reducible.

3.11 Loop termination

Once the loop has been detected, the profiler tries to determine h
is terminated. We restrict the analysis to loops terminated by a s
variable, because they represent the majority1 of loops used in real-
time tasks. To reduce the set of different termination conditions, c
stant propagation and constant folding are applied to the code.

Constant propagation is a well-known global flow analysis proble
The goal of constant propagation is to discover values that are
stant on all possible execution paths of a program, and to propa
these constant values through the program code as far as pos
Expressions whose operands are all constants, can be evalua
compile time (constant folding) and the results propagated furt
The constant expressions found are then substituted in the pars
performing a real optimization pass.

After this important first simplification step, the relational expre
sions are simplified by reducing the operators and eliminating un
essary boolean expressions. The set of commonly used expressi

1. Generally more than the 95% but for more precise statistics see “Oberon language
changes” on page 49
16 A Real-Time Profiler/Analyser for XOberon/PowerPC

Loop termination

com-

he

reb-
tant

ng

 inte-
e

now reduced to a few patterns, which can be analysed by the
piler. In our analysis we considered the following structures:

Termination conditions

(j relop const)
boolconst
(j relop const) boolop boolconst
~(j relop const)

Note that j is, in this example and in the following occurrences, t
variable responsible for loop termination.

The next step is to determine the starting value of j, which corre-
sponds to its value before the loop’s head—that is in the loop’s p
lock. This value, if existing, was already computed, by the cons
propagation pass.

FIGURE 5. Loop structure

The value of j at the end of the loop is included in the terminati
condition.

The last step is to compute how j changes within the loop. To simplify
the analysis, only one assignment to j within the loop is allowed, and
this assignment can only be an increment or a decrement by an
ger constant. The changes to j can be used for the computation of th
loop’s iterations.

Preblock

Postblock

Back Edge

Head
A Real-Time Profiler/Analyser for XOberon/PowerPC 17

Source-code analysis

s that
s is

fini-

gn,

ions

-

Loops are analysed starting from the innermost one. This ensure
when the increment is computed, the number of block repetition
known.

To test that the assignment is unique, we perform a reaching-de
tions analysis, checking that all the definitions of j reaching the state-
ment are not in the loop.

A definition of a variable x, is a statement that assigns, or may assi
a value to x. We say that a definition d reaches a point p, if there is a
path from the point immediately following d to p, such that d is not
invalidated along the path.

We have now all the elements to compute the number of iterat
using the following rules:

• REPEATs are transformed in WHILEs inverting the relational oper
ator and adding the increment to the starting value.

• The greater or equal than and the less or equal than operators are
transformed in greater than and less than.

• The greater operator is transformed in the less operator.

• If the loop is a REPEAT an iteration is added, since REPEATs are
executed at least once.

TABLE 1. Iterations computing rules

Operator Iterations Condition

= ∞ start = end ∧ inc = 0

= 1 start = end ∧ inc ≠ 0

= 0 start ≠ end

≠ ∞ start < end ∧ (inc < 0) ∨
(inc > 0 ∧ (end-start) mod inc ≠ 0)

≠ 0 start ≥ end

≠ start < end ∧ (end-start) mod inc = 0

< ∞ start < end ∧ inc < 0

< 0 start ≥ end

< start < end ∧ inc > 0

end start–
inc

end start–
inc

18 A Real-Time Profiler/Analyser for XOberon/PowerPC

User feedback

rtant
mon

na-
ed.
de to
EXAMPLE 4. Simplification of the termination condition

i := 200;
C := 100;
inc := -2;
Debug := FALSE;
É

REPEAT
É
i := inc + i

UNTIL (i ≥ C+1) & ~Debug

3.12 User feedback

The user feedback about the bounding analysis, is an impo
aspect, because the tool can help the user to eliminate some com
programming faults. Debugging infinite loops due to wrong termi
tion conditions or missing variable increments is greatly simplifi
User feedback is also very useful to help the user to adapt old co
the changes introduced by this work.

The following Oberon errors have been introduced.

Errors related to the new Oberon syntax:

• 601 illegal type of BOUND limit.

• 602 illegal value of BOUND limit.

• 607 LENGTH must be followed by a simple statement.

Errors related to the new real-time restrictions:

• 603 LOOPs are not permitted in real-time procedures.

• 604 NEW is not allowed in real-time procedures.

• 605 cannot profile inline procedure with branches.

TABLE 2. Simplification example

Step Start End Condition Increment

- ? ? (i ≥ C+1) & ~Debug ?

constant propagation 200 ? (i ≥ 100+1) & ~FALSE ?

reaching definitions 200 ? (i ≥ 100+1) & ~FALSE -2

constant folding 200 101 i ≥ 101 -2

≥, ≤ removal 200 100 i > 100 -2

The REPEAT loop
becomes a WHILE
loop

198 100 i < 100 -2
A Real-Time Profiler/Analyser for XOberon/PowerPC 19

Source-code analysis

etect
parse

. If
e, an

le to
his
lue

oop

t the
roll-

 it is
ack
fied
ads
Errors related to the loop’s iterations computations:

• 606 computed number of loops is different from the specific
value (BOUND).

• 620 infinite loop.

• 621 cannot compute the number of loop iterations.

The tool, thanks to the constant propagation analysis, is able to d
dead code, but because of the difficulties making changes in the
tree, dead code is not automatically removed.

When the iterations are successfully computed and a BOUND value
was specified for the loop, the tool checks the bounding validity
the user specified value is different from the correct computed on
error message is generated (606).

If the user has not bounded the loop, and the analyser is unab
compute the number of repetitions, an error is shown (621). T
generic error includes the impossibility to compute the starting va
of j, the ending value of j, or its increment.

Run-time errors

When a loop’s number of iterations exceeds the BOUND specified
value a run-time error (Oberon trap) is generated (“Number of l
iterations exceeds specified BOUND value”).

3.13 Loop elimination

We can now remove the loops from the data-flow graph. Note tha
loops are removed only from the basic blocks’ graph, no loop un
ing is performed on the generated code.

At each basic block is assigned a field to store the number of time
repeated. The loop elimination consists in the removal of its b
edge, and multiplication of this field, by the computed or speci
loop’s iterations number for each basic block it contains. Loop he
are treated differently depending of the loop’s type (WHILE or
REPEAT).
20 A Real-Time Profiler/Analyser for XOberon/PowerPC

Loop elimination

clic
ans
est
rob-
l

FIGURE 6. Loop elimination

With this process we transformed the graph in a directed acy
graph (DAG) allowing the computation of the longest path by me
of an adaptation of the Dijkstra algorithm for single-source long
path [10]. The algorithm solves the single-source longest-path p
lem on a weighted, directed graph G=(V, E)1 for the case where al
the weights of the edges are non-negative (w(u, v)>0 | (u,v) ∈ E).

ALGORITHM 2. Longest path

S := ∅ ;
Q := V[G];
WHILE Q ≠ 0 DO

u := min(Q); Q := Q \ u;
S := S U {u};
FOREACH v ∈ Adj[u] DO

IF d[v] < d[u] + w(u, v) THEN (* relaxation step *)
d[v] := d[u] + w(u, v);
pred[v] := u

ENDIF
ENDFOR

ENDWHILE

pred[] specifies the previous node on the longest path; d[] maintains
the longest path from the start to the current node; Adj[] is an adja-

1. V = vertices of the graph; E = edges of the graph.

1

2

3

4

w1

w2

w3

w3

w4

1

2

3

4

w1

w2•n+w3•(n-1)

w3

w4
A Real-Time Profiler/Analyser for XOberon/PowerPC 21

Source-code analysis
cency matrix describing the graph; Q is the queue of node to visit; S
stores the longest path.
22 A Real-Time Profiler/Analyser for XOberon/PowerPC

CHAPTER 4 A fine-grained approach to
the duration computation
 code
very
nd

are
ondi-

per-

nt.

 thus

hich
, pro-
em-

MUs
dress
here
In the second phase of this work, the profiler analyses the generated
to determine the length of the basic blocks. The cycles needed for e
instruction are approximated with the aid of run-time information, a
added to the corresponding block during the code generation.

4.1 Hardware and system preconditions

To compute the exact length of an instruction, the underlying hardw
and operating system must have a deterministic behaviour. The prec
tions can be stated as follows:

• The effects of caching, pipelining and DMA performance on tasks
formance are predictable.

• The operating system must only provide static memory manageme

• Asynchronous interrupts are not present.

• Tasks synchronization is provided by a pre run-time scheduler and
produces no overhead at run time.

• All resources are always available.

• The task is not interrupted.

Modern operating systems do not comply with these requirements, w
are too strong to be considered. XOberon, as the majority of systems
vides run-time scheduling, pre-emptive multitasking, and dynamic m
ory management.

The dynamic memory management, and therefore the use of the M
(two in the case of the 604e), can cause different length by the ad
computation. The use of multitasking introduces context switches, w
A Real-Time Profiler/Analyser for XOberon/PowerPC 23

A fine-grained approach to the duration computation

troy-

es-
ncur-
cted

ecu-
ory
lways
ing

-
ctical

itec-
rage
uc-

ssor
ckily
 task
oat-
ode,

ssor
on-
the cache and pipeline stati are changed in an unknown way, des
ing the predicted single task behaviour.

Timing indeterminism is a common characteristic of modern proc
sor and systems, where several different user processes run co
rently, and where the processor performance can be strongly affe
by the program code.

These restrictions do not prevent us to compute the maximum ex
tion time for a given task; we could consider that all the mem
accesses are always cache misses, that the branch prediction is a
wrong, and that the pipeline is always flushed. A prediction, us
this worst case assumptions (MAXTC), would be unfortunately use
less, because the task’s duration would be too high to have a pra
meaning1.

The analyser and profiler adapts the values specified by the arch
ture with the aid of statistical data as average stall cycles, ave
instruction parallelism, and memory effects to approximate instr
tion length with a normal processor behaviour.

Several XOberon tasks were tested to determine if the proce
usage was homogeneous among the different processes. Unlu
we observed the impossibility to set standard data describing the
behaviour with a general validity. The presence or absence of fl
ing-point computations, or different data dependencies in the c
result in very dissimilar behaviours.

Our approach consists in the run-time analysis of the task’s proce
use, monitoring it with the PowerPC 604e built-in Performance M
itor [12, 14].

1. As an example, the mean cache miss penalty for a Motorola MVME 2300 board is
between 20 and 30 cycles, compared to 1 cycle for a L1-cache hit.
24 A Real-Time Profiler/Analyser for XOberon/PowerPC

PowerPC 604e Performance Monitor

ron
sks’

the

nitor
ssor
 dis-
 and
e an
cep-
nitor

xecu-
 par-
 for
R),
ed at
the
ery
 the
FIGURE 7. PowerPC 604e Performance Monitor implementation

The task is first compiled, and run-time monitored on the XObe
system. The performance monitor automatically generates a ta
description file that is used by the compiler in conjunction with
static processor specifications to compute the instruction length.

4.2 PowerPC 604e Performance Monitor

The PowerPC 604e microprocessor provides a performance mo
facility to monitor and count predefined events such as proce
clocks, misses in either the instruction or data cache, instructions
patched to a particular execution unit, mispredicted branches,
many other occurrences. The count of such events (which may b
approximation) can be used to trigger a performance monitor ex
tion, which generates a processor interrupt. The performance mo
facility is not defined by the PowerPC ISA architecture.

Because a software task scheduler may switch a processor’s e
tion among multiple processes, and because statistics on only a
ticular process may be of interest, a process can be marked
profiling. The marking is done in the machine status register (MS
which is part of a task’s context, and is therefore saved and restor
each context switch. This feature is very useful to monitor only
to-be-profiled task, without performance losses. The marking is v
simple and avoids any overhead; it consists in three instructions in
process initialization.

Source
code

Object
file

XCompiler

Performance
monitor

XCompiler/
Profiler

Timing

Processor
specifications
A Real-Time Profiler/Analyser for XOberon/PowerPC 25

A fine-grained approach to the duration computation

ial-
store
moni-
the
ter-

d the
ddi-

er is
s of
 and

t the
t has
does
con-
IPS
era-
t-of-
eral
tive
rupts
d to
ble,
d for
ou-
ring

ways
lter-

riod
 the
ALGORITHM 3. Process marking.

mfmsr1 R3 get the current value of MSR
ori 2 R3, PM set the PM bit
mtmsr3 R3 writes back the MSR

The performance monitor uses the following 604e-specific spec
purpose registers: four performance monitor counters used to
the number of times a certain event has been detected, and two
tor mode control registers, which establish the function of
counters. Although the 604e supports a performance monitor in
rupt that is caused by a counter becoming negative, we inserte
code for gathering statistics in the system’s scheduler, avoiding a
tional overhead.

The overhead of the performance monitor routine in the schedul
about the 21% (approximately 174 cycles against the 143 cycle
the original scheduler). Note that the monitoring is user activated
does not normally affect the system performance.

The performance monitor events are not precisely reported a
right time; instead they are signalled some cycles after the even
taken place. A DEC study [15] demonstrates that event counting
not accurately attribute events to instructions. They based their
siderations on the Alpha 21164, the Pentium Pro, and the M
R10000 processors, but due to structural similarities, the consid
tion can be extended to the Motorola PowerPC 604 and 604e. Ou
order speculative execution amplify the problem. This brings sev
difficulties when using the performance monitor counter nega
interrupt mechanism. The user-chosen interval between the inter
is not precisely respected, and an additional counter is neede
compute its length. Two of the four counters are thus unusa
because one is reserved for the interrupt triggering, and the secon
the cycle counting. The integration of the performance monitor r
tines in the scheduler avoids the waste of the interrupt-trigge
counter.

The system collects statistics for three events—one counter is al
used to gather the number of cycles—in every scheduler cycle a
nately for a total of 35 events. The length of a scheduler pe
reduces the inaccuracies of the event reporting, but eliminates
possibility to analyse the single instructions characteristics.

1. move from MSR

2. or immediate

3. move to MSR
26 A Real-Time Profiler/Analyser for XOberon/PowerPC

Cycles per instruction

 the
ately
not
 This
data
 a
rder

ean

 604
ndi-
ch

red
truc-
 not
onse-
 sta-

pu-
d
ing

 the
 the

ddi-
 of

uld
ds),
To achieve faster context switching by an interrupt handler call,
XOberon system saves only the general-purpose register, deliber
ignoring the floating-point ones. Floating-point computations are
used in interrupts, because of an important speed improvement.
has however forced us to compute all the performance-monitor
with fixed-point arithmetic, which cause a precision loss, and
smaller maximum value for the used variables. Because of the o
of magnitude of the values returned only their incremental m
value is stored.

One of the new features introduced in the PowerPC 604e over the
is the condition register unit (CRU). The CRU executes all the co
tion register logical and flow control instructions freeing the bran
prediction unit (BPU). Unfortunately the dispatch bus is sha
between the two, so that only one condition register or branch ins
tion can be issued per clock cycle. The performance monitor was
updated and continues to consider both units as a single one. C
quently the profiler/analyser ignores the presence of the CRU; its
tistics are included in branch prediction unit ones.

4.3 Cycles per instruction

The simplest way to compute an instruction’s time is to use the po
lar instruction per cycle (IPC) metric. This is a poor metric to be use
when discussing processor performance and the instructions’ tim
behaviour, because it does not lend itself to intuition about what
components of that performance are. The differentiation among
different instruction types is lost.

With a given IPC an integer load will be treated as an integer a
tion, dividing the memory effects and integer pipeline stalls to both
them. In the following example, the left path (three additions) wo
be erroneously considered equivalent to the right path (three loa
but they obviously have very different timing characteristics.
A Real-Time Profiler/Analyser for XOberon/PowerPC 27

A fine-grained approach to the duration computation

uta-
 The

s in
s to

 infi-
ite-

 the
e FCE

iss
.

f the
ious
 All
roup

pro-
ult-
EXAMPLE 5. CPI for add1 and load paths

The IPC approximation is unacceptable for our longest path comp
tion because it could easily bring to the choice of the wrong path.
inverse of IPC is the cycle per instruction (CPI) metric, i.e. the mean
instruction length. The advantage of the CPI metric over IPC relie
the fact that the first can be divided into its major component
achieve a better granularity.

(EQ 1)

(EQ 2)

The total CPI for a given processor architecture is the sum of an
nite-cache performance and a finite-cache effect (FCE). The infin
cache performance is the CPI for the core processor under
assumption that there are no cache misses, on the other hand, th
accounts for the effects of the memory hierarchy.

(EQ 3)

The misses-per-instruction component is commonly called the m
rate, and the cycle-per-miss component is called the miss penalty

The FCE separation is not enough to have a good grasping o
processor usage by the different instructions. A natural and obv
additional classification is based on the different execution units.
the instructions dispatched to the same unit belong to the same g
with common characteristic. The PowerPC performance monitor
vides very fine-grained information about the different units, res
ing in the perfect integration of the preceding taxonomy.

1. add = add between registers; lwa = load word algebric.

add r3, r4, r5
add r3, r4, r5
add r3, r4, r5

lwa r3, 0(r4)
lwa r3, 0(r4)
lwa r3, 0(r4)

IF

CPI cycles per event() events per intsruction()⋅=

time
lengthstatic∑

CPI
-----------------------------------=

FCE cycles per miss() misses per instruction()⋅=
28 A Real-Time Profiler/Analyser for XOberon/PowerPC

Instruction length computation

les,
. To
ral-

 are

ing

dis-

itec-

e-
ruc-
ngth
and
ula-

at-

truc-
 less
The tool can distinguish the mean instruction length, mean cyc
and idle time on a per-unit base, achieving a better granularity
compute the instruction length: however, the mean instruction pa
lelism (p) has to be introduced, specifying how many instructions
executing concurrently,

The instructions length can now be expressed with the follow
equation:

(EQ 4)

The stall cycles in the dispatch unit (stalldispatch) represent the time,
measured in cycles, the instruction is blocked waiting for being
patched to the execution units.

4.4 Instruction length computation

The static length of instructions is specified by the processor arch
ture, and is summarized in the following table.

The multiple cycle units (FPU, MCIU, and LSU) have internal pip
lines, causing different throughput values depending on the inst
tion type. The consequence is that we are not able to know the le
of a given instruction, even if we do not consider memory effects
pipeline stalls. The lack of the longest path trace, hinders the sim
tion of the pipeline, forcing the tool to find an approximation indic
ing whether a given instruction is pipelined or not.

The compiler computes the distance (d) between the current ins
tion and the last one executed by the same unit. If the distance is

CPI
length stallunit+

p
-- stalldispatch FCE+ +=

TABLE 3. Execution latencies and throughput

Instruction Latency Throughput

Most integer instructions 1 1

Integer multiply (32x32) 4 2

Integer multiply (others) 3 1

Integer divide 20 19

Integer load 2 1

Integer store 3 1

Floating-point store 3 1

Double-precision floating-point multiply/add 3 1

Single-precision floating-point divide 18 18

Double-precision floating-point divide 31 31
A Real-Time Profiler/Analyser for XOberon/PowerPC 29

A fine-grained approach to the duration computation

e
put,
ncy.
 the

truc-
sults

nted
 a
ac-
 than
gth

nted:
k, it
ask.
per-
uc-

al to

ean
the
than a given constant (distunit) the instruction is considered to b
pipelined with its length corresponding to the specified through
otherwise the length is considered equal to the instruction’s late
The constant representing the maximal distance, differs among
three multiple cycle units, because they have different mean ins
tion length. Values between four and eight produced the best re
in the performed tests. Thus equation 4 becomes:

(EQ 5)

The problem with this approximation is that the distance is accou
only inside basic blocks. The first instruction of a given type in
block is considered always nonpipelined. This can result in big in
curacies when the average length of the basic block is short (less
10 instructions) since the percentage of wrong instructions len
becomes significant.

FIGURE 8. Instruction pipelining

To overcome the issue, the following strategy has been impleme
since the compiler has no information about the preceding bloc
can only assume that the structure will be similar for the whole t
Using the global loads of the execution units (gathered with the
formance monitor), it computes the probability that a given instr
tion type will be present in the last dunit instructions. If the probability
is greater than a given threshold value we consider the length equ
its throughput.

(EQ 6)

To check how this approximation works, we confronted known m
instruction lengths (retrieved with the performance monitor) with
predicted ones, confirming the soundness of the method.

CPI

latency stallunit+

p
--- stalldispatch FCE+ + d distunit>

throughput stallunit+

p
--- stalldispatch FCE+ + d distunit≤

=

MCIU

MCIU

Distance

?Basic Block

prob 1 1 loadunit–()
distunit–=
30 A Real-Time Profiler/Analyser for XOberon/PowerPC

Finite Cache Effect

ects
res),

che
om-
 the

iss
f the

t of
uch

hese
 as a

ion

s.

 of

int
By separating the CPI in its major components the memory eff
can be accounted to the concerned instructions (loads and sto
transforming equation 5 in its final form:

¨ (EQ 7)

(EQ 8)

4.5 Finite Cache Effect

Equation 3 describes the theoretical computation of the finite ca
effect; unfortunately we cannot directly retrieve the two needed c
ponents from the performance monitor. The equation, separating
memory accesses in load and stores, can be expanded to:

(EQ 9)

Unluckily the performance monitor is unable to return the store m
penalty; we consider it equal to the load miss one, because o
great similarity of the two operations.

(EQ 10)

4.6 Dispatch stalls

The stall cycles in the dispatch unit are an important componen
the CPI computation, describing processor hardware limitations, s
as the lack of units and the lack of registers. The stall cycles in t
units include even the instruction cache misses that are reported
lack of fetched instructions.

In detail, the performance monitor gives us the following informat
about the dispatch stalls:

• Number of cycles the dispatch unit stalls, waiting for instruction

• Number of cycles the dispatch unit stalls due to unavailability
reorder buffer entry.

• Number of cycles the dispatch unit stalls due to no floating-po
register rename buffer available.

FCEunit FCE= unit LSU∈

FCEunit 0= unit LSU∉

CPI

latency stallunit+

p
--- stalldispatch FCEunit+ + d distunit>

throughput stallunit+

p
--- stalldispatch FCEunit+ + d distunit≤

=

FCE missload penaltyload⋅ missstore penaltystore⋅+=

FCE missload missstore⋅() penaltyload⋅=
A Real-Time Profiler/Analyser for XOberon/PowerPC 31

A fine-grained approach to the duration computation

le.

 of

gis-

neral
the

ent
ood

ean
rted
lta-

ery
ngle
early

aila-
• Number of cycles the dispatch unit stalls due to no unit availab

• Number of cycles the dispatch unit stalls due to unavailability
general purpose register rename buffer.

• Number of cycles the dispatch unit stalls due to no condition re
ter rename buffer available.

• Number of cycles the dispatch unit stalls due to CTR/LR1 inter-
lock.

The dispatch unit data are very fine grained, but we need a ge
criteria for the dispatch unit stall cycles, which corresponds to
logical union of all the above events.

There is no information about the superposition of the differ
events, and therefore there is no way to correctly compute a g
melting of these events.

The dispatch unit has a four instruction length queue but the m
occupation is not monitored. Even worse is the fact that a repo
stall could be caused by one, two, three or four instructions simu
neously, without noticing the difference. A stall caused by ev
instruction in the queue simultaneously will be reported as a si
stall cycle. On the other hand, some stalls could be reported too
in the queue and be resolved at the time of the dispatch.

EXAMPLE 6. Dispatch unit queue instruction2 example

In the preceding example two instructions stalls due to unit unav
bility, but a single stall cycle is reported.

1. CTR = Count register
LR = Link register.

2. add = integer addition (SCIU)
load = data load (LSU)
fdiv = floating-point division (FPU)

add

add

load

fdiv

fdiv load

Dispatch queue

LSUFPU

Stall (no unit)

Stall (no unit)
32 A Real-Time Profiler/Analyser for XOberon/PowerPC

Execution units stall cycles

ean
d to

is
 per-

e of

tion
not

ossi-
ely
 the
itor
 the
thus
nit),
 a res-
ed.

iting
 exe-
Several tests with different approximation strategies for the m
number of cycles an instruction stalls in the dispatch unit, leade
the following computation:

(EQ 11)

(EQ 12)

pevent is the probability a given event will happen. This value
reported by the performance monitor, since it corresponds to the
centage of stall cycles for each event. pstall is the probability that a
stall in the dispatch unit will take place, in other words, the invers
the union of the probability that there are no stalls for each event.

With this approximation, we assume that no more that one instruc
will stall at the same time in the dispatch unit. This is obviously
true, but gives good results.

4.7 Execution units stall cycles

The performance monitor specifications state that there is the p
bility to gather the number of stall cycles for each unit. Unfortunat
this does not hold. Each unit has two reservation stations where
dispatched instructions wait for execution. The performance mon
signals the number of data dependencies of the instructions in
unit’s reservation stations. The number of returned stall cycles is
higher than the right value (i.e. the stall cycles in the execution u
because there is no guarantee that a dependence encountered in
ervation station will not be resolved when the instruction is execut

FIGURE 9. Dependencies in the reservation stations, code example1

In this example a stall is reported because the two instructions wa
in the reservation stations depend on the result of the instruction

pstall 1 1 pevent–()
event
∏–=

stalldispatch pstall
CPI

4
----------⋅=

1. fmul = floating-point multiplication

UnitReservation’s stations

fmul R5, R4, R4 fmul R5, R2, R2fmul R4, R3, R3
A Real-Time Profiler/Analyser for XOberon/PowerPC 33

A fine-grained approach to the duration computation

the
.

bvi-
r of

e of
um
By
 the

 the

fers
e is
g a
 that
 was

IU,
ding

the
enti-
rom

rm-
ore
, but
cuting in unit. However, no real stall will occur because when
instructions will reach the unit all of the operands will be available

Stalls in single cycle units

The length of the instructions dispatched to this class of units is o
ously known (one cycle). This allows us to compute the numbe
stall cycles in the following way:

(EQ 13)

The time that an instruction remains in a given unit is the invers
the unit’s load, multiplied by the nonidle time, and indicates the s
of the instruction length (one) with the number of stall cycles.
reversing this formula equation 13 can be obtained, which returns
stall cycles of the target unit.

Since small errors can occur in the load and idle time monitoring,
computed stall cycles value is checked against negative values.

The computed, and correct, number of stall cycles greatly dif
from the one returned from the performance monitor, whose valu
often out of its validity range. In some tests, with tasks containin
lot of data dependencies, both single cycle integer units reported
the whole processing time was spent with stall cycles; the result
obviously wrong since the tasks terminated correctly.

Stalls in multiple cycles units

The mean instruction length in multiple cycle execution units (MC
FPU, and LSU) in not constant. This hinders the use of the prece
formula (equation 13) for the computation of the stall cycle.

The only information that the performance monitor provides, is
number of dependencies in the reservation stations (wrongly id
fied as number of stalls). Unfortunately the value is too distant f
the correct one to be used without massive refinements.

Another problem in the stall cycle computations, is that the perfo
ance monitor does not return the total number of LSU stalls, or m
precisely the number of dependencies in the reservation stations
various subsets of the value:

• Number of cycles the LSU stalls due to BIU1 or cache busy.

stall 1 idle–()
load

----------------------- 1–=
34 A Real-Time Profiler/Analyser for XOberon/PowerPC

Execution units stall cycles

e in

 to
ust

ents
re

om-
tions
t as

ute
ueue

-

on
will
t an
• Number of cycles the LSU stalls due to a full store-queue.

• Number of cycles the LSU stalls due to operands not availabl
the reservation station.

• Number of cycles the LSU stalls due to busy MMU.

• Number of cycles the LSU stalls due to full load-queue.

• Number of cycles the LSU stalls due to address collision.

As with the dispatch unit stalls we do not have the possibility
deduce the union of the different events, and an approximation m
be computed.

Investigating these values with experimental methods, the ev
resulted generally disjoint. The LSU stall probability is therefo
computed as the sum of the different events probability.

(EQ 14)

To adjust the stalls returned by the performance monitor we first c
pute the mean occupation (in instructions) of the reservation sta
considering them as an M/M/1 queue, and the execution uni
server. The unit’s (server) utilization factor is:

(EQ 15)

With the utilization factor (equation 15) it is now possible to comp
the average number of instructions in the reservation station (q
length):

(EQ 16)

Since our queue is finite, values of NQ are rounded down to a maxi
mum of two.

The probability that an instruction will stall in a reservation stati
corresponds to the inverse of the probability that no instruction
stall in the queue. By reversing the equation the probability tha
instruction will stall in a given unit can be obtained.

(EQ 17)

1. Bus Interface Unit

stallLSU stallevent
event
∑=

ρ 1 idle–()=

NQ
ρ2

1 ρ–
------------=

pstall 1 1 pstallinstruction
–()

NQ–=
A Real-Time Profiler/Analyser for XOberon/PowerPC 35

A fine-grained approach to the duration computation

cles
oni-
all of
n is

efore

lues
d by
nce
t the

cu-
sed,
unit
ngle

the

tion
ting

er-
s of
(EQ 18)

The results obtained during several tests confirm that the stall cy
computed with equation 18 are closer to the reality than the m
tored values, since the stalls are no more considered globally on
the instructions present in the queue. However the approximatio
not able to consider that some dependencies will be resolved b
the instruction really enters the unit.

4.8 Instruction parallelism

The mean instruction parallelism is computed using global va
gathered on a per-task basis. The parallelism can be determine
reversing equation 4; the overall CPI is provided by the performa
monitor and the mean stall values are already approximated, bu
mean instruction length needs to be computed.

To compute the mean instruction length (in the multiple cycle exe
tion units) the mean stall value precedently computed can be u
subtracting it from the average time an instruction remains in the
—in the same way as the stalls were approximated for the si
cycle units.

(EQ 19)

(EQ 20)

The total mean instruction length is the weighted mean of all
instruction classes.

The elements are now available for computing the mean instruc
parallelism, which indicates how many instructions are execu
concurrently.

(EQ 21)

To include the finite cache effect we need to multiply it by the p
centage of load/store instructions, limiting its effects to this clas
instructions.

pstallinstruction
1 1 pstall–NQ–=

lengthunit 1= single cycle

lengthunit
1

load
----------- idle

load
-----------– stall–= multiple cycle

length

loadunit lengthunit⋅
unit
∑

loadtotal
--=

p
length stallunit+

CPI stalldisp– loadLSU FCE⋅()–
---=
36 A Real-Time Profiler/Analyser for XOberon/PowerPC

Some remarks on the instruction length computation

 the
veral
ility
 an
 this

ibility
ded
4.9 Some remarks on the instruction length
computation

This chapter describes the approximations used to compute
instruction length, in cycles, of the generated code. We used se
probabilistic formulae and queuing theory increasing the possib
of errors. The above computations were built and refined with
experimental method based on several tests. We were forced to
approach by the hardware used, which does not give us the poss
to monitor the single instructions and does not provide all the nee
data.
A Real-Time Profiler/Analyser for XOberon/PowerPC 37

A fine-grained approach to the duration computation
38 A Real-Time Profiler/Analyser for XOberon/PowerPC

CHAPTER 5 Results
d the
re also

. First
turn

eduler

ngth,
not
 the
 find

und-

set of
sted.
akes
ffer-

 pro-
, we

, and,
This section presents the test strategy used for the tool evaluation, an
results obtained. The effects of the language and system changes a
evaluated.

5.1 Test strategy

There are several ways to judge the correctness of a profiler/analyser
of all, the tool has to meet the requirements, in other words it must re
values that have a practical meaning and can be submitted to the sch
as the maximal duration.

This can be checked by letting the task run and measuring its le
which must always fall under the predicted limit. This kind of test is
very useful in the developing phase, since it is very difficult to state
correctness of the results. Moreover for large tasks we are not able to
the MAXT by hand, and therefore we are not able to check for the so
ness of the predictor.

In order to have a better understanding of the produced results, a
short typical tasks, where the longest path is a priori known, was te
This gave us the opportunity to see the errors that the predictor m
when computing the instruction length, and eventually compare the di
ent prediction strategies.

The drawback of the small-tests strategy is the homogeneity of the
duced code. On the other hand, if the code exhibits strong variations
are not able any more to understand the real meaning of the results
possibly, the causes of the errors.
A Real-Time Profiler/Analyser for XOberon/PowerPC 39

Results

es—
sults.
d to
 for

run-

 pre-
ned

 nec-
 not
 the

ngest
 the
the
asks
Each new approximation strategy was tested on all of our exampl
even the simplest ones—gathering accuracies of the various re
The results, or more appropriately, the errors were then analyse
check the correctness of the new strategy. The criteria used
accepting a new strategy can be summarized as follows:

• No predicted time must fall under the 95% of the measured (
time) value.

• The average distance between the actual run-time and the
dicted time should be significantly smaller than the one retur
by the old strategy.

FIGURE 10. Example of test-strategy validation

The use of an experimental step-wise refinement technique was
essary due to the lack of information. The performance monitor is
powerful enough to allow a precise strategy development, and on
other hand, the system behaviour is not known.

5.2 Timing correctness when the longest-path
trace is known

As precedently stated the set of the test samples with a known lo
path trace was chosen, heading for simplicity, in order to maintain
homogeneity of the code behaviour. After the very first tests,
assortment of examples was concentrated on a handful of t
including:

• Integer matrices multiplications (MatMul)

• Floating point matrices multiplications (MatMulFP)

• Searching the maximum in an integer array (Max)

• Searching the maximum in a floating point array (MaxFP)

Tests

Prediction error
Accepted strategies

Rejected strategies

Acceptance range

10%

-5%
40 A Real-Time Profiler/Analyser for XOberon/PowerPC

Matrix multiplications and array maximum

ctor

 the
the

ples
ns,
load-
ory
• A modified Whetstone benchmark [7]

• Runge-Kutta method

• Polynomial evaluation

• Distribution Counting

The following table summarize the errors produced by the predi
with eight base tests.

The tests show good results, with the majority of the error rates in
range of -5% to +10%. The following sections explain in detail
causes of the pessimistic behaviour of the prediction.

5.3 Matrix multiplications and array maximum

The code of the first four tests is simple, nevertheless the exam
include a good mixture of integer and floating-point computatio
branches, condition checking, and address computations. The
store unit is heavily stressed in the Max-tests where the mem
access are also tested.

ALGORITHM 4. Matrix multiplications

FOR l := 1 TO loop DO
FOR i := 0 TO dim-1 DO

FOR j := 0 TO dim - 1 DO
val := 0;
FOR k := 0 TO dim - 1 DO

val := val + m1[i, k] * m2[k, j]
END;
m3[i, j] := val

END
END

END

TABLE 4. Test results

Test Execution time Predicted time Error

MatMul 279.577 ms 310.553 ms +11.08%

MatMulFP 333.145 ms 351.753 ms +5.59%

Max 520.094 ms 555.015 ms +6.71%

MaxFP 854.930 ms 814.516 ms -4.73%

Whetstone 1958.308 ms 4248.548 ms +116.95%

Runge-Kutta 79.052 ms 108.648 ms +37.44

Polynomial evaluation 1251.194 ms 1187.591 ms -5.08%

Distribution counting 2388.816 ms 2579.051 ms +7.96%
A Real-Time Profiler/Analyser for XOberon/PowerPC 41

Results

 not
d by
os).
 effect
ictly-

rors
pro-
 pro-

hey
e of
m1, m2 are the two matrices to multiply; m3 is the result; dim is the
dimension of the matrices.

ALGORITHM 5. Array maximum

FOR j := 0 TO len-1 DO
a[j] := 0

END;
FOR j := 0 TO loop DO

max := MIN(TYPE);
FOR i := 0 TO len-1 DO

IF max ≤ a[i] THEN
max := a[i]

END
END

END

a is the array to analyse; max the array maximum; len the legth of the
array.

In the preceding code-snippet, the array maximum computation is
efficiently coded, since a max-value is unnecessarily substitute
an equal one (the array is always initialized with a series of zer
This ensures that the longest path is always executed. The same
can be obtained by using an array composed by an increasing str
monotonic series.

The prediction with these four tests produced very small er
(Table 4, “Test results,” on page 41). This confirms that when the
filed code presents a certain homogeneity the predictor is able to
file the processor usage with a good precision.

Although the four tests have similar prediction error results, t
show a different processor behaviour. In the following table som
the process characteristics are shown.

TABLE 5. Test dataa

a. The FCE, stallunit, and stalldispatch are expressed in cycles per instruction.

MatMul MatMulFP Max MaxFP

FCE 0.0017 0.0014 0.1022 0.1145

p 3.66 3.12 4.09 4.17

IPC (mean) 1.8839 1.5804 1.1727 0.7103

stallunit 0.51 0.26 1.66 2.66

length 1.10 1.32 1.00 1.77

stalldispatch 0.09 0.13 0.19 0.33
42 A Real-Time Profiler/Analyser for XOberon/PowerPC

Whetstone results

ible
cle,
ber of

oni-
xe-
 the
 the
puta-
ough

gth
 the

am,
ive)
sical
ol
ila-

e the

era-
epre-

n,

, the

 could
kernel
atch
Note that instructions parallelism greater than four are poss
although the processor fetches only four instruction per cy
because the processor parallelism is defined as the average num
instructions concurrently in-flight on the seven execution units.

The errors are due for the greatest part to the lack of an exact m
toring of the pipeline stalls, especially the number of stalls in the e
cution units, that reached 12 cycles per instruction for the FPU in
MaxFP test. The cause of this value (clearly too high) is that all
FPU computations are dependent on the operands’ address com
tions. Most of the dependencies are considered as stalls, alth
they are resolved before leaving the reservations stations.

Another part of the error is surely to attribute to the instruction len
approximation that, in the case of small basic blocks, (as it is in
tests) can produce some imprecisions.

5.4 Whetstone results

The Whetstone test is the major synthetic benchmark progr
intended to be representative for numerical (floating-point intens
programming. Based on statistics gathered at the National Phy
Lab in England, using an Algol 60 compiler, which translated Alg
into instructions for the imaginary Whetstone machine. The comp
tion system was named after the small town of Whetstone, outsid
city of Leicester, England, where it was designed [16].

Synthetic benchmarks try to match the average frequency of op
tions and operands of a large set of programs, but are often not r
sentative of the reality1.

The benchmark is a collection of eight (in the original versio
eleven) different small tests:

• Simple identifiers (floating-point arithmetic)

• Array elements (floating-point arithmetic with array elements)

• Array as parameter (the above test embedded in a procedure
array is passed as a reference parameter)

• Conditional jumps (if-then-else statements)

1. “No user runs synthetic benchmarks, because they don’t compute anything a user
want. Synthetic benchmarks are, in fact, even further removed from reality because
code is extracted from real programs, while synthetic code is created artificially to m
an average execution profile. Synthetic benchmarks are not even pieces of real programs,
while kernels might be.”

—Hennessy and Patterson [17, p. 21]
A Real-Time Profiler/Analyser for XOberon/PowerPC 43

Results

ce-

ated

arate
erate
ery
are
 dif-

ana-
rs in

ictor’s
sed.
pre-
 cor-

d to
wer
cted

the
on-
sys-

fer-
ob-
• Integer arithmetic

• Procedure calls (floating-point arithmetic embedded in a pro
dure)

• Array references (assignments between array elements)

• Integer arithmetic (additions and subtractions)

The test parts are embedded in completely disjoint cycles, repe
many times.

FIGURE 11. The structure of the Whetstone benchmark

The benchmark can be considered as a collection of small sep
code patterns. The different fragments are not similar and gen
very different processor utilisation data; moreover they exhibit v
different instruction parallelism. With our approach, statistics
computed as mean values, and they do not apply well to the very
ferent code parts of Whetstone, leading to prediction errors. By
lysing the different benchmark sections separately we found erro
the range -5% – +10%, as in the other four simple tests.

This test can be seen as a good method to observe the pred
behaviour, when the heterogeneity of the code is maximally stres
Although the difficulties presented by the code pattern hinder a
cise prediction, the results are acceptable within a factor-2 of the
rect value.

When developing the different approximations, attention was pai
the consequence of errors, trying to prefer higher values over lo
ones. This test is compliant to this technique, since the predi
duration is higher than the worst case.

Notice that, if the specified duration for a task is too high, only
system performance is affected (in term of utilization); on the c
trary a value under the effective run time would undermine the
tem’s stability.

5.5 RungeÐKutta method

The Runge-Kutta method numerically computes a solution for dif
ential equations, approximating the solution of the initial value pr

1 2 3 4 8
44 A Real-Time Profiler/Analyser for XOberon/PowerPC

Polynomial evaluation

dic-
uce

lls in

mpu-
r’s

 cor-
ases,
cles
duc-
lem y’=f(t, y) with y(a) = y0 over [a,b] with an error control and
variable step-size method.

ALGORITHM 6. Runge-Kutta Method1

h := 0.1; x0 := x0; y0 := y0;
FOR k := 0 TO len - 2 DO

xk := x0 + k*h;
k1 := f(xk, yk);
k2 := f(xk + 1/2*h, yk + 1/2*h*k1);
k3 := f(xk + 1/2*h, yk + 1/2*h*k2);
k4 := f(xk + h, yk + h * k3);
yk+1 := yk + h/6 * (k1 + 2*k2 +2*k3 + k4)

END

The high number of function calls, present in this test, cause a pre
tion higher then the correct value. The procedure calls, in fact, red
the code locality. As in the preceding examples the number of sta
FPU is wrongly reported.

5.6 Polynomial evaluation

This small test combines memory accesses and floating point co
tations evaluating a polynomial. We used the well-known Horne
rule to compute the value of the polynomial p at the point X.

ALGORITHM 7. Polynomial evaluation

FOR k := 0 TO n-1 DO
x[k] := 1.5;
c[k] := 0.4

END;

FOR i := 0 TO len - 1 DO
p := c[n-1];
FOR k := n-2 TO 0 BY -1 DO

p := c[k] + (X + x[k])*p
END

END

The code uniformity of this test produce good results, near to the
rect value. The small error is probably caused, as in many other c
by the wrong number of stalls in the FPU that reached 14 stall cy
per instruction. The code produced does never use the MCIU re

1. y(x)=ex, f(x, y)=y
A Real-Time Profiler/Analyser for XOberon/PowerPC 45

Results

 the

se
er of

cords

 use
ing
edic-

e
are
bvi-
pile

ers
very
ately
rm
ing the number of used units, and provoking a higher stall value in
dispatch unit due do unit’s unavailability.

5.7 Distribution counting

The distribution counting algorithm sorts a file of N records who
keys are integers between 0 and M. The idea is to count the numb
keys with each value and them use the counts to move the re
into position on a second pass through the file.

ALGORITHM 8. Distribution Counting

FOR j := 0 TO M-1 DO
count[j] := 0

END;
FOR i := 0 TO N-1 DO

count[a[i]] := count[a[i]] + 1
END;
FOR j := 1 TO M-1 DO

count[j] := count[j-1]+count[j]
END;
FOR i := N-1 TO 0 BY -1 DO

b[count[a[i]]-1] := a[i];
count[a[i]] := count[a[i]]-1

END;
FOR i := 0 TO N-1 DO

a[i] := b[i]
END

This test presents a very low error rate (8%) since it does not
floating-point arithmetic, and uses only sparingly the MCIU, avoid
the stall imprecisions. This demonstrate the soundness of the pr
tor when the performance monitor data are attendible.

5.8 Drivers timing

The only obstacle to the MAXT computation for actual real-tim
applications, is the XOberon drivers’ structure. The drivers
objects retrieved from a database, by querying their names. It is o
ously not possible to know the duration of a driver method at com
time, but the LENGTH construct helps us to specify its length.

We only need to compute the different methods’ length for the driv
used by the profiled task. A theoretical length measurement is
difficult because of the many hardware dependencies, but fortun
the drivers normally have a linear structure, resulting in very unifo
46 A Real-Time Profiler/Analyser for XOberon/PowerPC

LaserPointer

ite
ation
attern

base
ber
ctly

mal
ust

. The
r pen
pu-

ro-

and
ken.
execution times—they normally perform a simple read or wr
access. This allows an experimental measurement of their dur
over a big set of samples. The next example presents the code p
used for the drivers timing.

EXAMPLE 7. Driver method length measurement

GetObj(ÒnameÓ, objÓ);
PerformanceMonitor.Start();
FOR i := 0 TO Iterations-1 DO

monitorOn();
obj(type).method;
monitorOff()

END;
PerfomanceMonitor.Stop();
length := PM.cycles/Iterations - lengthmonitorOff

The test module retrieves the object from the system data
(GetObj) and repeatedly invokes the driver’s method a given num
of times. The performance monitor is switched on and off, exa
before and after the call to avoid the loop interferences.

With this simple scheme we are able to compute with a mini
effort the driver method’s lengths. Note that this measurements m
be done only once for a given driver on a given machine.

5.9 LaserPointer

The first test on a real application was done on the LaserPointer
LaserPointer is a test and example machine, which moves a lase
applied on the tool-centre-point (TCP) of a 2-joints (2 DOF) mani
lator.

The three real-time tasks of the robot-control application were p
filed, with the following results.

The WatchDogHandler is a very small task with a linear code,
therefore the longest path (i.e. the only existing path) is always ta

TABLE 6. LaserPointer results

Task Measured value MAXT

WatchDogHandler 869 cycles 860 cycles

PlannerHandler 891 cycles 894 cycles

ControllerHandler 2189 cycles 3214 cycles
A Real-Time Profiler/Analyser for XOberon/PowerPC 47

Results

four

able
 are
d they

nly
ed

ine
he
d as

time
axi-
 pre-
the

orks
stic
 the
dern
ply

to the
. The
 pro-
The result for this test (-0.99%) is to be compared to the first
simple tests of the preceding section.

The other two values are more difficult to check, since we are not
to force the longest path execution at run-time, but the results
coherent: they are greater or equal than the measured value, an
have a plausible value.

The application required very little adaptation to be profiled: we o
inserted five LENGTH constructs for the drivers calls, and chang
the procedure MathL.exp, which was recursive.

5.10 Hexaglide

The Hexaglide is a project developed at the Institute of Mach
Tools of the Swiss Federal Institute of Technology Zurich [18]. T
machine is a parallel manipulator with 6-DOF intended to be use
a high speed milling machine.

The table presents the results obtained by profiling three real-
tasks of the Hexaglide software. The first column contains the m
mal duration noticed at run time and the second one contains the
dicted MAXT. We achieved very good results very near to
measured maximal value.

5.11 Related work

The source level analysis approach was already used in several w
[7, 8], with a large use of bounding constraints, using determini
CISC machines. These works compute good predictions, but
approach does not have a practical meaning when applied to mo
processor architectures where the instruction length is not sim
deducible.

P. Pushner and Ch. Koza [8] presented an interesting refinement
longest path approach, adding knowledge to analysed programs
user inserts information in the source code, since he knows the
gram characteristics, to help reducing the worst case.

TABLE 7. Hexaglide results

Task Max run-time MAXT

TrajectoryHandler 0.058 ms 0.052 ms

DynamicsHandler 0.286 ms 0.451 ms

LearnHandler 0.065 ms 0.065 ms
48 A Real-Time Profiler/Analyser for XOberon/PowerPC

Oberon language changes

f the
tom

eMe
r

but it
tual
quire

ucts
nges
le,

f
xpo-

o-
ere
ci-

i.e.
r’s
 for

does
-

m-
ater
There are several run-time monitoring projects, but because o
higher precision requirements they are usually deployed on cus
architecture with heavy hardware support, such as the Profil
DIGITAL project [15]. Our profiling approach is too imprecise fo
discussing processor performance or evaluating produced code,
adapts well to the charter of this work. As indicated the other ac
performance monitor tools achieve much better accuracies but re
hardware support or breakpoints in the profiled task.

5.12 Oberon language changes

The influence on existing code brought by the new Oberon constr
is very small, as we noticed in the performed tests. The cha
needed for profiling a big application with the new tool are negligib
with average rates of 3–4 BOUND introductions every 100-Kbytes o
code. The system software needed only a small change in the e
nential function computation (MathL module), which was pr
grammed recursively. Small applications like the LaserPointer w
profiled without any adjustment (excluding the drivers’ length spe
fications). The number of different driver’s calls in an application,
different LENGTHs to specify, is normally small, reducing the use
effort. In the following table the number of changes in the code
some applications are shown.

5.13 Optimization performance

The constant propagation optimization performed on the code
not normally improve—or only in minimal part—the tasks perform
ance, because of its simplicity and little degree of utilization. A co
plete common subexpression elimination would for sure be of gre
benefit, especially in array indices computations.

TABLE 8. Changes in the source code of existing applications

Module Length BOUND LENGTH Other

LaserPointer 25 Kbytes - 5 -

MathL
(FP library)

14 Kbytes 1 - 1 recursive
procedure

Hexaglide [18] 54 Kbytes 2 4 -

Performance Mon-
itor and scheduler

20 Kbytes 1 - -
A Real-Time Profiler/Analyser for XOberon/PowerPC 49

Results

very
ns to
over-
s, in
bout

viour
ugh
erve

the
ing.

ies—
irect
 big
s to
–8-
on of
tures

axi-
 the
5.14 Penalties when using the performance
monitor.

The code to enable the performance monitoring is, has seen,
simple and does not affect the system performance. The additio
the scheduler to gather the monitored data cause, indeed, an
head. The insertion of code, for approximately 31 processor cycle
the scheduler produces a very small performance loss, i.e. a
0.10%.

5.15 Real-time Oberon programs

The work gave us the possibility to analyse the processor beha
with the XOberon system and several application. This data, altho
not directly relevant to the problem, are very interesting and des
to be mentioned.

The following table shows typical values gathered by monitoring
XOberon system code alone, and with some real-time tasks runn

Although L1-cache misses on the used boards have high penalt
between 20 and 30 cycles—the FCE is always small. This is a d
consequence of the real-time program’s simplicity, leading to a
code locality. The compactness of the XOberon kernel contribute
the good utilisation of the on-board caches, usually fitting in 4
Kbytes data–cache for the scheduler’s basic operations. The reas
the reduced memory accesses is the small use of dynamic struc
by the real-time processes.

The average IPC is usually small, compared to the processor m
mum of four. This is a direct consequence of the smallness of

TABLE 9. Performance monitor data

Event XOberon Applications

IPC 0.59 1.10

CPI 1.68 0.91

p 1.86 2.88

Loads (misses) 25.8% (0.66%) 12.41% (0.05%)

Stores (misses) 13.22% (0.00%) 4.93% (0.12%)

FCE 0.04 0.00

Miss penalty 25.62 18.53

Stall cycles in the execution units 1.32 0.87

BPU load 19.2% 13.6%

SCIU load 20.0% 61.4%
50 A Real-Time Profiler/Analyser for XOberon/PowerPC

Real-time Oberon programs

ncies
The
 and
basic blocks, and the high number of branches. Data depende
worsen the situation further by lowering the code parallelisation.
XOberon system code has very few mathematical computations,
contains a lot of branches (20%) resulting in a very low IPC (0.6).
A Real-Time Profiler/Analyser for XOberon/PowerPC 51

Results
52 A Real-Time Profiler/Analyser for XOberon/PowerPC

CHAPTER 6 Conclusions and
future directions
tool
 for
redic-
 dif-
and
cu-

es it
aly-

rk,
imits
nce
ibute
.

cycle
 pre-

 pro-
mer.

ron
ver-

ved
6.1 Conclusions

This works shows the feasibility of a source code timing prediction
for real-time tasks and its limits. The simplicity of the programs allows
an automated analysis, but the modern hardware hinders a precise p
tion. The performance of modern processors is becoming increasingly
ficult to understand: the dynamic nature of out-of-order issue
completion, coupled with dynamic branch prediction, speculative exe
tion paths, and with the complexity of deep memory hierarchies, mak
impossible to predict program behaviour solely through static code an
sis.

The run-time monitoring approach is very helpful when, as in this wo
the tasks are simple and relatively homogeneous, but shows its l
when the application complexity grows. The hardware performa
counters found in existing processors, which cannot accurately attr
events to the single instruction types, do not allow a precise prediction

The instruction length computations showed the soundness of the
per instruction metric separation suggested by P.G. Emma in timings
diction as in the field of performance evaluation [11].

The obtained results encourage the use of the tool in the real world,
ducing meaningful values and avoiding their guessing by the program

The clean integration of the performance monitoring tool in the XObe
system provides the user with a transparent infrastructure with a low o
head making it practical for continuous profiling, although the retrie
data does not guarantee a big precision.
A Real-Time Profiler/Analyser for XOberon/PowerPC 53

Conclusions and future directions

ng
ding
ron
com-
d to

espe-
res
ple-

 the
ould

r the
n is
er of
dds

of
xe-

ing
tool
ase
eline
 pipe-
A wealth of additional information was also collected, providi
interesting data about the interactions between instructions, inclu
concurrency levels, and pipeline utilization, in either the XObe
system or user applications. This helps the programmers and
piler-writers to better understand the processor behaviour, an
improve the code quality.

6.2 Future directions

The source code analysis has place for several improvements,
cially in the terminating conditions where more complex structu
could be analysed. Recursive depth computation could also be im
mented.

An important progress could be achieved by the introduction of
programmers’ knowledge in the source code analysis. The user c
help the profiler to eliminate excluding source paths.

EXAMPLE 8. Lack of knowledge

cur := Þrst;
WHILE cur # NIL DO (*BOUND 10000*)

IF cur.name = ÒDilbertÓ THEN
DoSomething(cur)

END;
cur := cur.next

END;

In this short example a long list of people is scanned searching fo
ones named Dilbert, and if the element is found some operatio
done on the person’s record. The user could know that the numb
individuals with the searched name is very small, but the profiler a
the time for the IF construct to each iteration. The introduction
knowledge could allow the user to specify a maximal number of e
cutions for a given code snippet.

The instruction length computation with the performance monitor
approach has also room for several improvements. A monitoring
giving information on an instruction basis could be used to incre
the accuracies, or the measurements could be integrated with pip
simulation in order to better understand some phenomena as the
lining in the single execution units.
54 A Real-Time Profiler/Analyser for XOberon/PowerPC

APPENDIX A File formats
tion
NF

the
h all

d in
n.

tion
The following section provides the format of the processor descrip
file, and the performance monitor information file, described in EB
syntax.

A.1 Processor description Þle

The processor description file contains static information about
PowerPC architecture. It includes the processor clock and a list wit
the instructions indicating their timing characteristics.

File = NAME String FREQUENCY number InstructionList.
Serialization = Ò-Ó | ÒExecuteÓ | ÒI/OÓ | ÒFPemptyÓ |ÒPostdispatchÓ |

ÒString/multipleÓ | ÒDispatch/executeÓ | ÒCompleteÓ.
Unit = ÒMCIUÓ | ÒSCIUÓ | ÒFPUÓ | ÒBPUÓ | ÒCRUÓ | ÒLSUÓ |

ÒCompletionÓ.
Bus = Ò1Ó | Ò0Ó.
Early = Ò1Ó | Ò0Ó.
InstructionList = INSTRUCTION { Name Unit Length Throughput

Bus Regs Early Serialization }.

Early exit indicates instructions that can complete earlier than specifie
case of special conditions. Bus indicates a bus access by the instructio
Regs indicates the number of register involved (as in string manipula
operations).

EXAMPLE 9. Processor description file

NAME PPC604e
FREQUENCY 300
INSTRUCTIONS
add SCIU 1 1 0 0 0 -
A Real-Time Profiler/Analyser for XOberon/PowerPC 55

File formats

ian
adde SCIU 1 1 0 0 0 Execute
stmw LSU 2 2 0 1 0 String/multiple
fres FPU 18 18 0 0 0 FPempty
eciwx LSU 2 2 1 0 0 Execute

A.2 Performance monitor information Þle
PMInfoTag = 07X.
File = PMInfoTag CPI FCE p stalldispatch stallSCIU stallMCIU

stallFPU stallBPU stallLSU loadSCIU loadMCIU loadFPU
loadBPU loadLSU.

All the values are IEEE 754 single precision values in little end
mode.
56 A Real-Time Profiler/Analyser for XOberon/PowerPC

APPENDIX B Implementation problems
last
rious
nd
ee as
on for
me-

d to
uce

 flow

 the
-

g an
alled
d to
sed
B.1 Compiler integration

The structural complexity of the Oberon compiler has grown in the
years. The original Ceres Oberon compiler was adapted to the va
architectures (Motorola 680x0, Intel 80x86, MIPS, POWER, a
PowerPC) and to the language changes (Oberon-2). The parse tr
intermediate representation was added to support the code generati
different processors. The lack of a compiler rewrite with a clean inter
diate representation, hinders the addition of optimization techniques.

The profiler/analyser generates useful data, which could be use
improve the code quality, but unfortunately the work needed to introd
the changes is too big, nearly approximating a complete rewrite.

B.2 Constant propagation and reaching deÞnitions

To compute the number of loop iterations, we performed some data
analysis: constant propagation and folding, and reaching definitions.

The introduction of the additional intermediate representation and
large use of use-def chains and bit-vectors caused several memory prob
lems, because there is no automatic memory reclamation durin
Oberon command execution. The MacOberon garbage collector is c
only after a constant number of command’s calls. We were thus oblige
maintain an alternative memory management with a pool of dispo
memory blocks to recycle.
A Real-Time Profiler/Analyser for XOberon/PowerPC 57

Implementation problems

tion
[12]

per-
ng).

alls,
nits
 res-
B.3 Performance monitor

The biggest problem with the performance monitor implementa
was the faulty documentation. The PowerPC 604e User Manual
is full of typographical and structural errors.

A wealth of small errors are present in the specification of the
formance monitor events (e.g. unit misleading, wrong bit numberi

As precedently seen by the computation of the instruction st
some events are even wrongly specified. By the multiple cycle u
the number of missing operand (unresolved dependencies) in the
ervation stations is stated as the number of stall cycles.
58 A Real-Time Profiler/Analyser for XOberon/PowerPC

APPENDIX C User interface
tool

ule

with-
riting
ali-
 any

ariable

e
ults.
 are
pro-

tions

roce-
it in
C.1 Oberon Compiler

In this small section the new compiler options needed for the profiling
are presented.

We added the possibility to tell the compiler to ignore the mod
SYSTEM during the cycle length computation (\S option). SYSTEM pro-
vides the user the possibility to write data at a given memory address
out any checks. This feature is very useful and indispensable when w
drivers, but insane for code optimization. A generic memory write inv
dates everything that was precedently defined since it could destroy
stored data structure.

The programmer, which specifies to ignore SYSTEM, asserts that memory
accesses are only used to access peripherals, and that no program v
is touched by SYSTEM calls.

When not specified, every SYSTEM memory access invalidates all th
constant definitions resulting in very poor constant propagation res
Since the constant propagation, and reaching definitions analysis
essential to the automatic loop bounding, we chose to allow this com
mise, although the use of SYSTEM could be inherently dangerous.

The procedures to be profiled are specified between the compiler op
and the module name in the following way:

["[" procname ["+"] { "," procname ["+"] } "]"]

The “+” sign after the procedure name indicates that the tasks or p
dure must be run-time monitored. This cause the compiler to set a b
A Real-Time Profiler/Analyser for XOberon/PowerPC 59

User interface

form-

tion
tem

 the

e
s.

c
cles

 of

ed
the machine status register of the task, so that the PowerPC per
ance monitor will consider it during the measurements.

In order to profile a procedure the performance monitor informa
file and the processor description file must be in a Oberon Sys
readable directory (Oberon path).

C.2 PowerPC Performance Monitor

The PerformanceMonitor module acts as the user interface for
performance monitor. It provides the following commands:

• PerformanceMonitor.Start
Starts the tasks’ monitoring.

• PerformanceMonitor.Stop
Stops the tasks’ monitoring. No data is cleared.

• PerformanceMonitor.Info
Prints general information about the tasks processor utilization, including th
units loads, stalls, and idle cycles, the memory accesses, and cache misse

• PerformanceMonitor.Info taskId ~
Same as above, but prints information about the specified real-time periodi
task. The performance monitor in not able to distinguish the different run cy
of a periodic task, thus requiring a special treatment.

• PerformanceMonitor.Restart
Restarts the performance monitor, resetting all of the collected data.

• PerformanceMonitor.LSUInfo
Prints detailed information about the LSU stalls.

• PerformanceMonitor.WriteInfoFile
Creates the performance monitor information file.

Additional commands have been implemented for the monitoring
the XOberon system scheduler.

• PerformanceMonitor.MonitorSchedulerStart
Starts the system’s scheduler monitoring. The gathered data can be retriev
with the usual commands (Info, LSUInfo and WriteInfoFile).

• PerformanceMonitor.MonitorSchedulerStop
Stops the system’s scheduler monitoring.
60 A Real-Time Profiler/Analyser for XOberon/PowerPC

APPENDIX D Profiler/Analyser Structure
piler,

and
d by

as

cts:

d the
nseri-

ce-
f the

dule
This section presents the changes operated on the MacOberon Com
including the new modules added.

D.1 List of compiler changes by module

The following list shows the different modules, a small description,
the modifications brought to the source. The new modules introduce
this work have their name in boldface.

PPCOOPM: Low level file support, and error managing.
The support for the additional symbol file with procedure length w
added.

PPCOOPS: Scanner.
The module was modified for the recognition of the new constru
LENGTH and BOUND.

PPCOOPD: Special profiler files interface.
This module acts as an interface to the processor description file an
performance monitor data file. It provides a scanner and a parser to u
alize the information contained in the files.

PPCOOPT: Type definitions and symbol file generation.
The code for the generation of the additional symbol file with the pro
dure length was added to module. It also contains all the definitions o
objects needed for the data flow analysis as basic block and bit vectors.

PPCOOBV: Bit vectors.
In addition to the implementation of the bit vectors methods, the mo
A Real-Time Profiler/Analyser for XOberon/PowerPC 61

Profiler/Analyser Structure

an-
tion.
ro-

nding

 and

iate
dule

tion

ion

ina-

s all
also contains the special memory management needed for the use-def
chains. The disposed chain elements are stored to be recycled.

PPCOOBB: Basic blocks.
This important module, contains all the routines needed for the m
agement and building of the additional intermediate representa
This includes computation of instruction length with the data p
vided by the performance monitor data file.

PPCOOPL, and PPCOOPC: Code generation.
All the generated instructions are signaled to the PPCOOBB module,
so that their length can be computed and added to the correspo
basic block.

PPCOOD: Decoder.
Decodes all the instructions contained in the inline procedures,
reports them to the PPCOOBB module.

PPCOOPV, PPCOOPB, and PPCOOPP: Parser modules.
The handling of the new restrictions and constructs (BOUND and
LENGTH) was added, including the generation of the appropr
parse tree nodes for the run-time bound value check. This mo
also reports the calling of procedures to PPCOOBB so that their
length can be added to the appropriate block.

PPCOOCP: Constant propagation.
Includes all the data flow computations for the copy propaga
problem.

PPCOORD: Reaching definitions.
Includes all the data flow computations for the reaching definit
problem.

PPCOOLA: Loop analysis.
Contains all the automatic bounding routines including the term
tion condition analysis.

PPCOODAG: Directed acyclic graph management.
Contains the longest path and loop unrolling computations.

Compiler: Interface module.
Contains the support for the new compiler options and coordinate
the compile and profile phases.
62 A Real-Time Profiler/Analyser for XOberon/PowerPC

Reference list
d

-

1] R. Brega.
A real-time operating system designed of predictability an
run time safety.
Proceedings of The Fourth International Conference on
Motion and Vibration Control (MOVIC), pp 379-384.
Institute of Robotics, ETH, Zürich 1998.

2] R. Brega, and S.J. Vestli.
A hard real-time operating system for mechatronics.
Not published, ETH Zürich, June 1998.
http://www.ifr.mavt.ethz.ch/

3] N. Wirth, and J. Gutknecht.
Project Oberon.
Addison-Wesley, 1992.

4] H. Mössenböck.
Object-Oriented Programming in Oberon-2.
Springer-Verlag, 1993.

5] Ingo Wegener.
Theoretische Informatik.
B.G. Teubner, Stuttgart, 1993.

6] M. Franz and T. Kistler.
Slim Binaries
Communications of the ACM, XL(12):87–94, 1997.

7] C.Y. Park, and A.C. Shaw.
Experiments with a program timing tool based on source
level timing schema.
Computer, Vol. 24, No. 5, IEEE, May 1991, pp. 48-57.
A Real-Time Profiler/Analyzer for XOberon PPC 63

64

s.

.

f

8] P. Puschner, and Ch. Koza.
Calculating the maximum execution time of real-time
programs.
The Journal of Real-Time Systems (1):159-176, 1989.
Kluwer Academic Publishers, The Netherlands, 1989.

9] A.V. Aho, R. Sethi and J.D. Ullman.
Compilers: Principles, Techniques and Tools.
Addison-Wesley, 1983

10] E. W. Dijkstra.
A note on two problems in connection with graphs.
Numerische Mathematik, 1:269-271, 1959

11] P.G. Emma.
Understanding some simple processor-performance limit
IBM Journal of Research & Development XLI(3), 1997.

12] IBM Microelectronics Division and Motorola Inc.
PowerPC 604/604e RISC Microprocessor User’s Manual
Motorola, 1998.
Also available in electronic form at: http://www.mot.com/
SPS/PowerPC/teksupport/teklibrary/manuals/604UM.pdf

13] IBM Microelectronics Division and Motorola Inc.
PowerPC Microprocessor Family: The Programming
Environments.
Motorola, 1994.
Also available in electronic form at: http://www.mot.com/
SPS/PowerPC/teksupport/teklibrary/manuals/pem32b.pd

14] F.E. Levine, and C.P. Roth.
A programmer’s view of performance monitoring in the
PowerPC microprocessor.
IBM Journal of Research & Development XLI(3), 1997.

15] J. Dean et al.
ProfileMe: Hardware support for instruction-level profiling
on out-of-order processors.
Proceedings of Micro-30, IEEE, 1997.

16] H.J. Curnow, and B.A. Wichmann.
A synthetic benchmark.
The Computer Journal IXX(1):43-79, 1976.
Oxford University Press.

17] J.L. Hennessy, and D.A. Patterson.
Computer Architecture a Quantitative Approach.
Morgan Kaufmann, San Francisco, second edition 1996.
A Real-Time Profiler/Analyzer for XOberon PPC

18] M. Honegger, A. Codourey, and E. Burdet.
Adaptive control of the Hexaglide, a 6 dof parallel
manipulator.
IEEE International Conference on Robotics and
Automation, Albuquerque, USA, April 1997.

D. Bertsekas, and R. Gallager.
Data Networks.
Prentice-Hall, New Jersey, second edition 1992.

G. Kackmarcik.
Optimizing PowerPC Code.
Addison-Wesley, 1995.

N.P. Jouppi and D.W. Wall.
Available instruction-level parallelism for superscalar and
superpipelined machines.
Proceedings of the Third International Conference on
Architectural Support for Programming Languages and
Operating Systems.
Boston, Massachusettes, April 1989

N. Wirth.
Compiler Construction.
Addison-Wesley, 1996.
A Real-Time Profiler/Analyzer for XOberon PPC 65

66
 A Real-Time Profiler/Analyzer for XOberon PPC

Acknowledgments
 to
for

pro-

very
aults

-

se
es in

 of
tions
I would like to thank the following persons.

Roberto Brega, my supervisor assistant, for his willingness
actively support me during my work, for his invaluable hints, and
reviewing this report’s draft.

Prof. Thomas Gross, for having accepted to be my supervising
fessor.

Mr. Charles P. Roth, at the IBM Somerset Design Center, for the
helpful explanations and suggestions about the documentation f
and performance monitor architecture.

Mr. Michael Naef for the useful information on the DIGITAL Con
tinuous Profiling Infrastructure Project.

My family that morally and financially supported me during the
years, and allowed me to accomplish my computer science studi
Zurich.

All my friends, especially Gabriele, who carefully read the draft
this thesis, and Andrea and Luca who gave me valuable sugges
about the work.
A Real-Time Profiler/Analyzer for XOberon PPC 67

	Introduction
	Abstract
	XOberon
	PowerPC 604e overview
	FIGURE 1.� 604e block diagram
	FIGURE 2.� Pipeline diagram

	Problem statement
	Source-code analysis
	Preconditions
	Changes in the Oberon language
	BOUND
	LENGTH
	Intermediate representation
	FIGURE 3.� Compiler structure

	Exceptions
	Procedure calls
	Inline procedures
	Imported procedures
	Loop detection
	FIGURE 4.� Parse tree structure

	Loop termination
	FIGURE 5.� Loop structure
	TABLE 1. Iterations computing rules
	TABLE 2. Simplification example

	User feedback
	Run-time errors

	Loop elimination
	FIGURE 6.� Loop elimination

	A fine-grained approach to the duration computation
	Hardware and system preconditions
	FIGURE 7.� PowerPC 604e Performance Monitor implementation

	PowerPC 604e Performance Monitor
	Cycles per instruction
	Instruction length computation
	TABLE 3. Execution latencies and throughput
	FIGURE 8.� Instruction pipelining

	Finite Cache Effect
	Dispatch stalls
	Execution units stall cycles
	FIGURE 9.� Dependencies in the reservation stations, code example
	Stalls in single cycle units
	Stalls in multiple cycles units

	Instruction parallelism
	Some remarks on the instruction length computation

	Results
	Test strategy
	FIGURE 10.� Example of test-strategy validation

	Timing correctness when the longest-path trace is known
	TABLE 4. Test results

	Matrix multiplications and array maximum
	TABLE 5. Test data

	Whetstone results
	FIGURE 11.� The structure of the Whetstone benchmark

	Runge–Kutta method
	Polynomial evaluation
	Distribution counting
	Drivers timing
	LaserPointer
	TABLE 6. LaserPointer results

	Hexaglide
	TABLE 7. Hexaglide results

	Related work
	Oberon language changes
	TABLE 8. Changes in the source code of existing applications

	Optimization performance
	Penalties when using the performance monitor.
	Real-time Oberon programs
	TABLE 9. Performance monitor data

	Conclusions and future�directions
	Conclusions
	Future directions

	File formats
	Processor description file
	Performance monitor information file

	Implementation problems
	Compiler integration
	Constant propagation and reaching definitions
	Performance monitor

	User interface
	Oberon Compiler
	PowerPC Performance Monitor

	Profiler/Analyser Structure
	List of compiler changes by module

	Reference list
	Acknowledgments

