
Approximating the Worst-Case Execution of Soft Real-Time Applications

Matteo Corti

c© Matteo Corti, 2005.

Doctoral Thesis ETH No. 15927

Approximating the Worst-Case Execution of Soft
Real-Time Applications

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

(ETH ZÜRICH)

for the degree of
Doctor of Technical Sciences

presented by
Matteo Corti

Dipl. Informatik-Ing. ETH
born September 12, 1974

citizen of Aranno, TI

accepted on the recommendation of
Prof. Dr. Thomas Gross, examiner

Prof. Dr. Peter Puschner, co-examiner

2005

It is the mark of an instructed mind to rest satisfied with the degree of
precision which the nature of the subject admits and not to seek
exactness when only an approximation of the truth is possible.

– Aristotle

Abstract

The soundness of real-time systems not only depends on the exactness of the results but also on
their delivery according to given timing constraints. Real-time schedulers need an estimation of
the worst-case execution time (i.e., the longest possible run time) of each process to guarantee
that all the deadlines will be met. In addition to be necessary to guarantee the correctness of
soft- and hard-real-time systems, the worst-case execution time is also useful in multimedia
systems where it can be used to better distribute the computing resources among the processes
by adapting the quality of service to the current system load.

This dissertation presents a set of static compile-time analyses to estimate the worst-case
execution time of Java processes focusing on the approximation of the WCET of fairly large
soft-real-time applications on modern hardware systems.

In a first phase the program is analyzed to extract semantic information and to determine the
maximal (and minimal) number of iterations for each basic block, by possibly bounding every
cyclic structure in the program. As a first step, the semantic analyzer, embedded in an ahead-of-
time bytecode-to-native Java compiler, performs an abstract interpretation pass of linear code
segments delimiting the set of possible values of local variables at a given program point and
discovering a subset of the program’s infeasible paths. This step is followed by a loop-bounding
algorithm based on local induction variable analysis that, combined with structural analysis,
is able to deliver fine-grained per-block bounds on the minimum and maximum number of
iterations. To resolve the target of method calls the compiler performs a variable type based
analysis reducing the call-graph size.

In a second phase the duration of the different program’s instructions or basic blocks is
computed with respect to the used hardware platform and the computational context where the
instructions are executed. Modern systems with preemption and modern architectures with non-
constant instruction duration (due to pipelining, branch prediction and different level of caches)
hinder a fast and precise computation of a program’s WCET. Instead of simulating the CPU
behavior on all the possible paths we apply the principle of locality, limiting the effects of a
given instruction to a restricted period in time and allowing us to analyze large applications in
asymptotically linear time.

We describe the effectiveness in approximating the worst-case execution time for a number
of programs from small kernels and soft-real-time applications.

v

Riassunto

La correttezza dei sistemi in tempo reale non dipende unicamente dall’esattezza dei risultati
ma anche dalla consegna dei risultati entro dei limiti temporali prestabiliti. Per garantire che
tutte le scadenze siano rispettate, gli scheduler in tempo reale necessitano della stima del tempo
massimo di esecuzione (worst-case execution time) di ogni processo. Il tempo massimo di es-
ecuzione, oltre a essere necessario per garantire la correttezza dei sistemi in tempo reale (soft-
e hard real-time), è anche utile in sistemi multimediali, dove può essere usato per meglio dis-
tribuire le risorse tra i processi, adattando la qualità del servizio offerto, al carico momentaneo
del sistema.

Questa dissertazione presenta una serie di analisi statiche eseguite durante la compilazione
per stimare la durata massima di esecuzione di processi Java concentrandosi sulla approsi-
mazione del tempo di esecuzione di applicazioni in tempo reale sufficientemente grandi su
piattaforme hardware moderne.

In una prima fase, la semantica del programma è analizzata in modo da determinare il nu-
mero massimo (e minimo) di iterazioni per ogni blocco trovando il limite del numero di iter-
azioni delle strutture cicliche. Questa analisi, implementata come modulo di un compilatore
Java ahead-of-time (da bytecode a codice nativo), esegue un’interpretazione astratta di segmen-
ti lineari di codice delimitando i possibili valori che le variabili locali possono assumere in un
determinato punto nel programma, e scoprendo un sottoinsieme dei cammini impossibili nel
grafo del controllo di flusso. In seguito, usando un algoritmo per la delimitazione del numero
di iterazioni dei cicli, basato sull’analisi delle variabili induttive combinato con un’analisi strut-
turale del programma, ricaviamo dei limiti accurati sul numero di iterazioni a livello dei singoli
blocchi. Per definire le possibili destinazioni delle chiamate dei metodi il compilatore esegue un
analisi basata sui tipi delle variabili, in grado di ridurre la dimensione del grafo delle chiamate.

In una seconda fase, viene calcolata la durata delle singole istruzioni (o dei singoli blocchi)
in relazione alla piattaforma hardware usata e al contesto computazionale nel quale le istruzioni
sono eseguite. La presenza di diritto di prelazione e la durata non costante delle varie istruzioni
sulle architetture moderne (dovuta alla presenza di pipeline, predizione delle diramazioni e di-
versi livelli di cache) impedisce un calcolo veloce e preciso del tempo massimo di esecuzione
di un programma. Invece di simulare il comportamento del processore su tutti i possibili cam-
mini applichiamo il principio di località, limitando gli effetti di una data istruzione a un periodo
definito di tempo, permettendoci di analizzare grosse applicazioni in un tempo asintoticamente
lineare.

Descriviamo infine l’efficacia dell’approssimazione del tempo massimo di esecuzione per
una serie di programmi: da piccoli benchmark ad applicazioni soft-real-time.

vii

Acknowledgments

This thesis would have not been possible without the support of many persons. First of all, I
want to thank my advisor Thomas Gross who gave me the opportunity to work with him and
who guided me during my research. He encouraged me during the years at ETH and taught me
how to engage in independent research by being a continuous source of support, encouragement,
and example.

I would also to thank Peter Puschner for agreeing to be my co-examiner and for his helpful
comments and suggestions.

I am grateful to Roberto Brega who inspired this work by convincing me to work on the
XO/2 embedded system and investigate the worst-case execution time estimation problem.

My warmest thanks to my parents, Bruna and Luciano Corti, who supported me financially
and morally during my studies and to my brother Paolo Corti for his continuous support and
encouragement.

It’s a pleasure to thank Cristoph von Praun and Florian Schneider for their contributions
and commitment to the Java bytecode-to-native compiler. Our common infrastructure, shared
among various projects, helped me to discuss several ideas and problems, and to find synergies
among different aspects of compiler construction.

A number of students contributed with term projects and master thesis to both the compiler
and worst-case execution time estimations tools. Daniel Augsburger, Bernhard Egger, Damon
Fenacci, Stephen Jones, Andrea Rezzonico, Daniel Steiner and Marco Terzer helped to im-
prove and enhance the compiler. Fabiano Ghisla, Felix Pfrunder, Robert Simons, and Michael
Szediwy worked on the hardware-level analysis and finally Nathalie Kellenberger and Stefan
Heimann who worked on the evaluation infrastructure.

The friendly and collaborative environment at the Computer Systems Institute and especially
in Thomas Gross’ group made my time at ETH an enjoyable and interesting experience. I am
therefore extremely thankful to all my past and present colleagues: Cristian Tuduce, my office
mate for many years, Jürg Bolliger, Susanne Cech, Irina Chihaia, Hans Domjan, Roger Karrer,
Peter Muller, Valery Naumov, Yang Su, Patrik Reali, and Oliver Trachsel.

A special thanks goes to Andrea Lombardoni, Andreas Hubeli and Luca Previtali, our daily
coffee and lunch breaks in addition to be pleasant moments were a constant source of interesting
discussions.

A final thanks to Patrick Schaufelberger and Robertino Bevacqua, my home mates during
my stay in Zurich, and to the many friends for the encouragement and support in these past
years.

ix

Contents

Abstract v

Riassunto vii

Acknowledgments ix

Contents xi

1 Introduction 1
1.1 Worst-case execution time . 1
1.2 Semantic analysis . 2

1.2.1 Goals . 3
1.2.2 Manual annotations and special purpose languages 3
1.2.3 Abstract interpretation . 5
1.2.4 Data-flow analysis . 5

1.3 Hardware analysis . 5
1.4 Thesis statement . 6
1.5 Road-map for this dissertation . 7

2 Semantic Analysis 9
2.1 Structural analysis . 9
2.2 Loop bounding . 12
2.3 Partial abstract interpretation . 14

2.3.1 Partial linear paths . 16
2.3.2 Representation of the abstract domain 17
2.3.3 Safe approximations of the abstract domain representation 18
2.3.4 Abstract interpretation . 19
2.3.5 False paths . 19
2.3.6 Variable ranges . 20

2.4 Loop header bounding . 21
2.4.1 Precedence graph . 21
2.4.2 Iteration branches . 23
2.4.3 Reachability of iteration branches . 24
2.4.4 Loop header iterations . 25
2.4.5 Nested loops . 27

xi

xii CONTENTS

2.5 Improving the precision of the loop bounder 27
2.5.1 Execution counts for iteration branches 28
2.5.2 Execution counts for basic blocks . 30
2.5.3 Complexity . 32

2.6 Example . 32
2.7 Manual annotations . 33
2.8 Method calls and object orientation . 37

2.8.1 Call graph reduction . 38
2.8.2 Method specialization and inlining . 39
2.8.3 Recursion . 40

2.9 Discussion . 41

3 Hardware-Level Analysis 43
3.1 Related work . 43

3.1.1 Caches and pipelines . 43
3.1.2 Branch prediction . 45

3.2 Statistical approaches . 45
3.2.1 XO/2 WCET estimator . 46

3.3 The road to partial trace simulation . 51
3.4 Partial trace emulation . 52

3.4.1 Locality . 52
3.4.2 Partial trace simulation . 54
3.4.3 Longest path . 57
3.4.4 Complexity . 59

3.5 Summary . 60

4 Implementation 61
4.1 The Java language . 61

4.1.1 Scheduling and event handling . 62
4.1.2 Memory management . 62
4.1.3 Our approach . 62
4.1.4 Multi-threading . 62

4.2 The compiler . 63
4.2.1 Memory management . 63

4.3 Hardware-level measurements . 64
4.3.1 On-chip performance monitoring units 64
4.3.2 XO/2 measurements . 64
4.3.3 Linux measurements on Intel Pentium processors 65
4.3.4 Discussion . 66

5 Evaluation 67
5.1 Testing environment . 67

5.1.1 Platform . 68
5.2 Benchmarks . 68

CONTENTS xiii

5.2.1 Small synthetic kernels . 68
5.2.2 Application benchmarks . 68

5.3 Partial abstract interpretation . 69
5.4 Small synthetic kernels . 70
5.5 Application benchmarks . 70

5.5.1 Tuning and evaluation of the partial traces length 72
5.6 Effects of semantic analysis . 72
5.7 Representation of ranges of iterations . 73
5.8 Annotations . 74
5.9 Automatic inlining . 74
5.10 Memory allocation . 74
5.11 Resources . 76
5.12 Discussion . 76

6 Conclusions 77
6.1 Summary and contributions . 77
6.2 Future work and open issues . 78
6.3 Concluding remarks . 79

Bibliography 81

List of Figures 89

List of Tables 91

1
Introduction

1.1 Worst-case execution time

A real-time system is a system whose correctness does not only depend on the soundness of
the results (functional correctness) but also on the timeliness of their delivery. We normally
distinguish between hard-real-time systems, where the each task has to finish before its deadline
under any condition (e.g., high load and possible faults) and soft-real-time systems, where the
system is occasionally allowed to miss a deadline. Soft-real-time systems, in contrast to hard-
real-time systems, generally have longer response time requirements and they are asynchronous
with the state of the environment. The driving characteristic in the design of a soft-real-time
system is the average performance and no catastrophe occurs if a single deadline is missed. In
hard-real-time systems, on the other hand, the focus is not on the overall system efficiency but
on the deadlines of the single tasks which have to be respected for the system to be in synchrony
with the environment (e.g., external sensors or actuators).

A hard-real-time scheduler has therefore to guarantee that all the concurrent tasks will meet
the specified deadlines by distributing limited system resources. Hard-real-time schedulers
usually schedule processes according to their fixed (e.g., rate monotonic schedulers [64] and
deadline monotonic schedulers [58]) or dynamic priorities (e.g., earliest deadline first sched-
ulers [64]). The reader is referred to [17] for a comprehensive introduction to hard-real-time
systems and scheduling algorithms. If the worst-case execution time (WCET), which corre-
sponds to the longest possible run time, and the deadline of each process is known, these sched-
ulers, thanks to on-line or off-line admission testing, are able to guarantee that all the deadlines
will be met [90, 64].

Soft-real-time systems instead are allowed to miss a deadline from time to time without
catastrophic consequences. They also often relax the requirements for the scheduled applica-
tions, as the specification of a precise and known tight WCET (e.g., by allowing some impreci-
sion), to accommodate dynamic and aperiodic tasks [37, 28, 52]. In these systems the WCET,
in addition to be used for admission control, can also be used to adjust the quality of service by
dynamically changing the type and quantity of running processes based on their longest possi-
ble execution time. As an example, a multimedia server could adjust the quality of the delivered
streams, and therefore the CPU load, by a careful compile-time analysis of the encoding and
decoding algorithms and their timing requirements.

In both hard- and soft-real-time systems, if the WCET of a process is overestimated the
system will reserve more resources then needed and will be underutilized but the safety of the
system will be guaranteed. If, instead, the WCET is underestimated, some processes will not

1

2 CHAPTER 1. INTRODUCTION

be able to meet their deadlines resulting in a likely system crash, especially for hard-real-time
systems.

For these reasons, before accepting a task the system performs a schedulability test (or
analysis) to determine if a set of processes can be scheduled, ensuring that every task will meet
its deadline. An exact schedulability test is an NP complete problem [35] and the systems
usually performs a sufficient schedulability test (which could return a negative result for some
acceptable configurations). The possibility to perform a correct schedulability analysis depends
on the precision of its inputs: While the deadline and the starting time of a process depend on
the system design its computation time depends solely on its implementation. The importance
of the WCET analysis of real-time processes is therefore clear since the correctness of the
schedulability analyses depends on it.

The simplest and most common way to estimate the WCET of an application is by experi-
mentation: The WCET corresponds to the highest measured execution time of several runs of
the analyzed process with different input sets (the problem in this case consist in choosing the
inputs that will generate the longest program duration). Although many systems used to esti-
mate the WCET in this way this solution is clearly not always satisfactory since it is possible
that some other input will generate a higher running time. For this reason, despite the fact that
a general automated worst-case execution time analysis is impossible due to the undecidabil-
ity of the halting problem, the efforts in automatic WCET computation have rapidly grown in
the past years attracting many research groups [85, 95, 84, 40, 31, 44]. These efforts differ
in the programming language that is supported, the restrictions that are imposed on programs
admitted for real-time scheduling, the (real-time) runtime system that controls the execution,
the hardware platforms that are used and the amount of approximation that is allowed (there are
even approaches that use probabilistic models to estimate the WCET [5]). But all of them try to
compute or estimate the WCET, while reducing the need of programmers intervention.

The WCET of a process usually depends on two main aspects: the semantic of the program,
which includes aspects as the maximum number of loop iterations and the procedure or method
call sequences, and the actual time needed to execute the instructions on the given hardware.
The first aspect, the semantic analysis, deals with the meaning of the code, trying to understand
the role of the expressions and structures in the execution of the program with particular atten-
tion to cyclic structures that can greatly influence the duration of the process (see Section 1.2).
After all the possible execution sequences have been computed, an hardware-level analysis
computes the maximum duration of the program on the given hardware (see Section 1.3). Sec-
tion 1.4 describes our thesis and summarizes the contributions of this work.

1.2 Semantic analysis

Real-time, or predictable programs, must have an upper bound on their duration. This implies
that every loop has a bound on the maximum number of iterations and that there is a bound on
the depth of recursive procedure calls.

The simplest way for a WCET analyzer to compute these bounds is to require the users
to manually specify them in the source code with special language constructs, but these an-
notations require expert programmers—which is not always the case for embedded systems
developers—since complex control sequences could obfuscate some nonfrequent paths. But the
main problem of annotations lies in their correctness and their maintenance: the compiler and

1.2. SEMANTIC ANALYSIS 3

the system cannot guarantee that the programmer made no mistake specifying the bounds, and
moreover every time the code is changed the affected annotations have to be updated. These is-
sues are aggravated by the fact that, due to the increasing speed of embedded systems, real-time
programs are getting larger and more and more complex, hindering a simple manual analysis
of the code (e.g., modern programs make an extensive use of dynamic structures and dynamic
method calls).

For this reasons in the past years, the efforts in WCET analysis automatization tried to build
tools able to compute or approximate a process’s longest execution time at compile time by,
for example, bounding the maximum number of loop iterations or by detecting the presence of
infeasible paths.

1.2.1 Goals

The main goal of (automatic) WCET analysis is therefore to find a bound on the cyclic structures
of the program. All the loops must have a finite and known maximum number of iterations, and
for each recursive call sequence there must be a finite and known maximum recursion depth.

These bounds must be as small as possible to avoid wasting runtime resources: If the WCET
is overestimated the scheduler will allocate more time than needed for the application.

In addition, to further reduce the WCET estimation, a WCET analyzer normally tries
to identify false or infeasible paths (paths that cannot be executed with any input, see Sec-
tion 2.3.5), which are then excluded from the set of possible program traces.

1.2.2 Manual annotations and special purpose languages

The first automatic attempts to compute the longest possible duration of real-time processes
made use of programmer’s annotations and can be divided in two major groups: special purpose
languages and extensions to common general purpose languages.

Special purpose languages

Instead of designing tools to compute the WCET for real-time programs developed with gen-
eral purpose languages, several groups designed new languages focusing on predictability and
timing.

One example is Real-Time Euclid [55, 95] which restricts the control-flow by prohibiting
recursion and by allowing only for-like loops with fixed bounds. Another example are syn-
chronous programming languages such as Esterel [6]. Synchronous languages take a different
approach: they are designed as reactive systems waiting for events and acting in a deterministi-
cally determined amount of time (event handling is divided in a finite number of steps).

These languages, having strict timing limitations, allow a precise and simple analysis and
provide a nice and elegant solution to the WCET computation of hard-real time programs.

These languages are very useful for hard-real-time projects as they either have strict require-
ments and feature limitations or they enforce a particular style of programming directly related
to the timing constraints.

4 CHAPTER 1. INTRODUCTION

This, on the other hand, makes them not ideal for soft-real-time programming or to multi-
media environments where the WCET could be of interest but where timing constraints are not
the driving application design factor.

Annotations for general purpose languages

A different approach is the modification of existing programming languages to ease the WCET
analysis or to enforce a certain timing behavior. In this case some language constructs are
introduced to allow the user to annotate the program and manually specify iteration bounds.

One example, object-code analysis, is given by the work of Aloysius Mok and his group:
they introduced a technique to automatically produce template annotations for C code which
are then edited by the programmer to specify the duration of loops [70]. Another example is
the Timing Schema [92] which uses, as annotations, intervals of iterations in a set of formulas
derived by a recursive traversal of the program. The method was later extended by the informa-
tion description language (IDL), which allows to specify path constraints identifying infeasible
paths [78].

The first approach presented by the MAintainable Real-time System (MARS) project from
the Vienna University of Technology [82] is a further extension to the annotations for gen-
eral purpose languages including the handling of incorrect specifications. The method handles
MARS-C programs, a C dialect that supports timing annotations and constraints. The timing
schema was also successfully adapted to an object-oriented language (RealTimeTalk) support-
ing polymorphism, inheritance, and message passing [39].

Some of these methods use timing trees [79, 103], a data structure created to decouple
the semantic information from the source. These syntax trees contain all the relevant timing
information and can be used by all the tools involved in the WCET analysis as they work as
a mapping from the source to the timing properties of the code. The information contained in
timing trees can also be adapted to support simple code changes performed by an optimizing
compiler.

Other approaches, as a graph-based technique from the MARS project [84] or the Cindarella
method [87], use integer linear programming (ILP) to solve sets of user specified inequalities
that specify the number of loop iterations (additional inequalities can be introduced to model
infeasible paths). Both approaches present an elegant formulation and are based on clear and
well-known mathematical foundations.

But although all these methods can produce excellent results with correct annotations, they
are very prone to errors since the responsibility for the correctness of the annotations lies in
the hands of the developers. Specified constraints can always be checked at run-time but again
there is no guarantee that eventual faults will be discovered.

This problem motivated the growth of tools to automatically compute semantic annotations
to minimize the needed user intervention. These tools can be broadly characterized in two
major groups by the type of analysis they are based on: tools based on abstract interpretation
(see Section 1.2.3) and tools based on data-flow analyses (see Section 1.2.3).

1.3. HARDWARE ANALYSIS 5

1.2.3 Abstract interpretation

Abstract interpretation [23] is a technique to automatically analyze programs by executing them
in an abstract domain keeping track of semantic information. This method can be used to
compute the WCET of a program automatically, without user annotations, by keeping track of
all the possible values for each variable on every path.

Although this approach can, in theory, deliver perfect results, the number of possible paths
grows exponentially for every conditional jump and every loop iteration. To avoid the explosion
of paths that have to be considered (keep in mind that to have an exact knowledge of the program
we should store information for each possible path) the intermediate data is merged at certain
program points (such as the end of loops) to safely approximate the results.

This approach was successfully implemented by Jan Gustafsson for RealTimeTalk [40],
an object-oriented language for distributed hard real-time systems and used by the group of
Reinhard Wilhelm for their WCET computation framework [31].

Section 2.3 presents a more in-depth description of abstract interpretation in relation to this
thesis.

1.2.4 Data-flow analysis

To avoid the twin problems of path explosion and information loss of the approaches based on
abstract interpretation (see Section 1.2.3), David Whalley and his group at the Florida State
University presented a technique to bound loops using only static information on the local
variables involved in loop termination [42, 44, 43]. Loops are therefore analyzed in isolation
looking at the conditional branches that could provoke an exit from the loop, at the variables
used in the conditional checks, and at how these variables are changed in the loop.

This method, although less general than approaches using abstract interpretation, is able to
handle a large number of loops found in real-time programs in a quick and simple way (the
running time is in the asymptotic case quadratic in the number of branches).

Section 2.2 shows how this method works in detail and presents how we enhanced it to
precisely compute bounds for every program’s block.

1.3 Hardware analysis

The second important issue in WCET computation, after the analysis of the program’s seman-
tics, is the estimation of the time needed to execute the different instructions on the given hard-
ware.

On simple processors where the duration of the execution of each instruction is known and
constant, this task is trivial: The maximal number of iterations for each basic block is known
from the semantic analysis, and duration of each block corresponds to the sum of each in-
struction’s duration. But with the introduction of modern pipelined processors in the embedded
world, the computation of the instruction duration became more complex. Because of pipelines,
caches and branch prediction, the duration of an instruction is not constant but depends on the
previously executed instructions making the computation of a tight WCET a hard problem.

A very conservative solution (not considering timing anomalies [66]), for the instruction

6 CHAPTER 1. INTRODUCTION

duration computation, would be to consider each memory access a cache miss, every branch as
wrongly predicted, and each instruction in the pipeline as dependent an all the previous ones.
The computed WCET would be formally correct but orders of magnitude higher than any prac-
tical value, leading a severe and unacceptable waste of resources (e.g., a cache miss normally
requires several orders of magnitude more time than a cache hit). The goal of a good hardware
WCET estimator is therefore to conservatively minimize these pessimistic assumptions by a
careful code and architecture analysis.

Similarly to the semantic analysis there are two main groups of approaches to estimate
the instruction duration on the hardware level: it is possible to execute the assembler code in
an abstract domain keeping track of the CPU state [31], or it is possible to deduce the CPU
behavior from sophisticated data-flow analyses.

If the program is small and only contains simple for-like loops it is possible to simulate the
cyclic structures as an atomic block: the maximum number of iterations is easily computable
and it is possible to simulate (or measure) the block’s WCET since there longest path is im-
plicitly known [94]. As the complexity of the analyzed programs grows this approach suffers
from the fact that loops cannot be considered as independent blocks with a fix duration but their
execution time could depend on the program or method input.

Since abstract interpretation suffers from the same problems that are present in the semantic
analysis (see Section 1.2.3), several research groups analyze the pipeline status with a data-flow
method to determine the WCET [41, 60, 63, 107]; these approaches can be extended to the
analysis of the instruction cache, since the behavior of this unit is, as the pipeline, independent
from the system’s memory allocation [41, 60, 98]. Data caches, instead, pose an additional
problem since memory allocation does not only depend on the analyzed program but also on
the underlying system and input set [53, 60].

The difficulties in computing the instruction duration are worsened by modern embedded
operating systems which support preemption [48, 37] and the dynamic loading and unloading
of processes [15, 89, 77]. The possible interferences caused by unpredictable context switches
make a precise static analysis of the hardware behavior almost impossible. The phenomenon
is even more significant in soft-real-time environments where the analyzed tasks often have to
share the system and hardware with other non-real-time processes. Techniques exist to take into
account the effects of fixed-priority preemptive scheduling on caches [57, 16], but the nature
and flexibility of dynamic systems prevents an off-line analysis with acceptable results.

Another possible approach to the data cache problem focuses on the active management
of the caches: If we can prevent the invalidation of the cache content, then execution time of
memory accesses is predictable. One option is to partition the cache [54, 61] so that one or more
partitions of the cache are dedicated to each real-time task. These approaches help the analysis
of the cache access time since the influence of multitasking is eliminated, but on the other hand,
cache partitioning limits the system’s performance [62].

1.4 Thesis statement

All the approaches in Sections 1.2 and 1.3 are pragmatic solution for the computation or esti-
mation of the worst-case execution time addressing various application domains.

The WCET of a program is an important concept that is not only useful in hard-real-time

1.5. ROAD-MAP FOR THIS DISSERTATION 7

scheduling analysis—to ensure that every process will have enough resources—but can be ap-
plied in soft-real-time and in adaptive systems guaranteeing different quality of service. An
example could be a multimedia system where the encoders or decoders of the live streams are
chosen depending on the available timing resources.

In this dissertation, I show that

“Compile-time semantic analysis can detect loop bounds and gather control-flow
information to delimit the longest execution path of Java programs. It is also pos-
sible to delimit the size of the call graph of programs using method ovverriding by
a whole programs worst-case execution time analysis of object-oriented code.

The worst-case execution time can be approximated on modern execution platforms
combining compile time analyzes and run-time information.

It is possible to perform the WCET estimation of large programs without relying on
path enumeration.”

The dissertation establishes this thesis statement as follows:

1. It presents a set of fast compile time analyses to bound the maximum number of itera-
tions for each source language semantic construct. These algorithms present a linear or
quadratic asymptotic behavior (on the size of the source code) allowing us to handle large
applications.
It presents an implementation of the semantic analyzer for Java programs embedded in a
general purpose bytecode-to-native ahead of time compiler.

2. It shows how to approximate the instruction duration on modern complex processors with
several levels of caches, pipelines and branch prediction in asymptotically linear time.
It describes two different implementations, one for the XO/2 system on PowerPC and the
other for Linux running on Intel processors, of a hardware-level WCET analyzer which
makes use of some run-time data to approximate the duration of the analyzed program.

3. Using various synthetic benchmarks as well as some real applications the evaluation
shows that it is possible to compute WCET approximations in an unpredictable schedul-
ing environment.

1.5 Road-map for this dissertation

This dissertation is organized as follows: Chapter 2 describes the semantic analysis performed
by our WCET approximation technique. We present a local analysis which automatically
bounds the number of loop iterations, reduces the call graph by reducing the set of targets
for dynamic method calls and detects a subset of the false paths present in the program. Chap-
ter 3 describes the analysis on the hardware level showing how we approximate the instruction
durations without performing path enumeration. Chapter 4 discusses implementation issues re-
lated to the chosen programming language (Java) and the used hardware platform (PowerPC
and Intel). Chapter 5 evaluates the results obtained testing benchmarks and real applications
while Chapter 6 addresses possibilities for further research and concludes this dissertation.

2
Semantic Analysis

The semantics of a program are a crucial point that must be understood to bound the program’s
worst-case execution time: In particular a WCET analyzer must identify every cyclic seman-
tic structure of the control-flow graph and find a bound on the maximum number of iterations.
Loops and recursive subroutine calls are therefore the main focus of an automatic WCET se-
mantic analysis (see Section 2.2).

In addition to identify loop bounds, particular attention is usually paid to infeasible (also
called false) paths. These are part of control-flow paths that are impossible for every potential
execution. These paths can be then excluded from the WCET computation since they will never
be possibly executed (see Section 2.3).

Object-oriented languages, with dynamic method calls, pose an additional difficulty: For
every dynamic call site, there are many different possible jump targets, and it is therefore es-
sential to perform a precise type analysis to minimize the set of possible targets reducing an
eventual WCET overestimation (see Section 2.8).

This chapter describes how we extract the semantic information from single threaded Java
programs and compute a safe bound on the maximum number of iterations for each program’s
statement.

2.1 Structural analysis

Our WCET analyzer is implemented as a module in a bytecode to native compiler. Working
with the class bytecodes as input has several advantages as it provides the ability to work with
several compilers and even different languages (e.g., there exist Java bytecode backends for
Lisp, Eiffel, SmallTalk and Ada). Java bytecode, in addition to normal object-code binaries,
has also the advantage that it retains some useful information about the program’s symbols
such as variables and types. The drawback is that we have no access to the source code, and the
semantic structure of the programs is obfuscated (i.e., Java bytecode stores no information on
the type of jumps, which are simply gotos).

For this reason the first step in our semantic analyzer is a precise structural analysis of
the program: we divide the control-flow graph into sets of regions that describe the program’s
semantic structures. This kind of structural analysis was first presented by Sharir [91, 72] and
employed in several decompilers and optimizing compilers. Sharir’s structural analysis is a
powerful interval analysis able to decompose the control-flow graph into a set of basic semantic
structures like loops and various kind of conditional structures. It proves particularly useful
when the source code is not available as in the case of decompilers [19], or, as in our case, in a

9

10 CHAPTER 2. SEMANTIC ANALYSIS

bytecode to native compiler [68].
In addition to precisely classify the generated intervals, the individual semantic regions are

smaller and simpler than in a classic interval analysis (although the control tree formed by the
semantic regions is typically larger). Another positive aspect is that every reducible region has
a unique entry point (the region header) facilitating many analyses.

The algorithm builds a depth-first spanning tree of the control-flow graph, which is then
traversed in postorder. For every node that is traversed the compiler tries to match it with a
series of predefined structural language-dependent patterns (see Figure 2.1 for the list of patterns
we recognize). Note that we do not consider any pattern to represent Case–switch structures
since they are translated to a sequence of If–then and If–then–else structures before building the
control-flow graph. This simplification limits the efficiency of the produced code (we cannot
generate jump tables) but helps in many analyses since for every block we have at most two
successors which are easily identifiable (i.e., branch and fail).

These patterns are categorized into cyclic, noncyclic, proper, and improper regions. Im-
proper (or nonreducible) regions are cycles with more than one entry point (these constructs are
not allowed in Java and many other languages) while proper regions are noncyclic structures
which do not follow a standard pattern (they are normally generated by complex If statements
containing complex boolean expressions). We use proper regions to define arbitrary noncyclic
regions that cannot be reduced to any known pattern as in [72] and not to describe regions that
are non improper in a general way.

While Block, If–then, If–then–else, While–loop, Repeat–loop and Improper patterns are
static in the number of nodes and edges (see Figure 2.1.a), Natural–loop and Proper can have
an undefined number of nodes keeping the general structure (see Figure 2.1.b). E.g., a Natural–
loop can have an unlimited number of exit edges).

During the traversal every node is first compared to the header of each known pattern: if the
node and its immediate successors match with the predefined structure they are reduced to an
abstract node representing the semantic region—similarly to a classical interval analysis.

In addition, before reduction, for every cyclic region (i.e., loop) we add a special empty
pre-header node which acts as the unique header predecessor outside the loop and a special
empty continue node which acts as the tail of the unique back-edge (see Figure 2.2): Every
edge from a header predecessor that is not part of the loop is redirected to the pre-header, and
every back-edge is redirected to the continue node. This ensures that every loop has a unique
entry point and a unique back-edge.

Figure 2.3 shows an example of the pattern matching process: When node n0 is analyzed
the compiler checks if the successors (n1 and n2 in our case) have a common unique successor
(n3) and no other predecessors other then n0 itself. If all the conditions apply the gray nodes
are reduced to an abstract node representing an If–then–else region, if not, the compiler tries to
match n0 with the header of the next patterns from the list shown in Figure 2.1.

The result is a hierarchical tree of subgraphs embedded into each other representing the se-
mantic constructs of the program. Figure 2.4 shows an example decomposition of a simple Java
program: the program on the left represented by the control-flow graph on the right is decom-
posed into semantic regions (dotted lines); the table on the bottom summarizes the composition
of the different regions.

Structural analysis, in contrast to a normal analysis based on the dominator relation, can

2.1. STRUCTURAL ANALYSIS 11

Block If–then If–then–else Proper (example)

While–loop Repeat–loop Improper Natural–loop (example)

(a) Static patterns (b) Dynamic patterns

Figure 2.1: Structural patterns (the header is shown shades).

pre−header

continue

(a) (b)

Figure 2.2: Loop transformations: the loop (a) in enhanced by the addition of a pre-header and
a continue node (b).

easily recognize cyclic structures with more than one back-edge as a single loop (see Figure 2.5)
and handle improper (or irreducible) regions (see the Improper pattern in Figure 2.1).

Unfortunately the comparison of small graph regions with a series of predefined patterns, as
initially presented by Sharir, is not sufficient to handle every reducible control-flow graph, as
some noncyclic structures generated by complex boolean expressions in conditional statements
do not follow a general scheme (proper regions and natural loops, see Figure 2.1). Complex
boolean expressions regions are not reducible to any known pattern: They are noncyclic and
are connected to the rest of the control-flow graph by two joint nodes (also called articulation
points). Joint nodes are a set of nodes, normally two, which connect a strongly connected region

12 CHAPTER 2. SEMANTIC ANALYSIS

n0

n1 n2

n3

Figure 2.3: Pattern selection.

of the graph to the rest of it, removing these joint nodes, this region remains disconnected. Since
such a region has a unique entry point, every node is dominated by the region header. Figure 2.6
shows such a region (dashed line) for a composite If–then–else statement (the two joint nodes
are shown in gray).

To properly identify these commonly found regions, we developed the graph traversal algo-
rithm shown in Figure 2.7 that is performed on the partially reduced graph: Starting from the
node that is supposed to be the region header (header), after having tried to match it with a
known pattern, we iteratively traverse the graph looking for the second joint node. We stop, and
return an empty region, if we find a node that has a successor or a predecessor that is not domi-
nated by the header. Otherwise we create a new region (proper region) containing the subgraph
between the two joint nodes.

The complete algorithm has a worst-case running time asymptotically quadratic in the num-
ber of basic blocks but has shown experimentally to be asymptotically linear in the average
case.

Figure 2.8 shows an example with a snapshot of the traversal algorithm. Starting from node
K (the possible header of the region) we traverse all the successors and mark them as visited
(gray nodes). For each node we check if all its successors and predecessors are dominated by
the header. In this case node L is part of the region while node M is not, since node N or node
O are not dominated by the header (K). This means that K is not a proper region header and we
return the empty set.

2.2 Loop bounding

Cyclic structures as loops or recursive procedures are of central interest to compute an upper
bound on the execution time of any program. Being one of the major factor that contributes
to the duration of a process, loops and their analysis techniques are the main concern in the
design and implementation of a WCET analyzer since the choice of the analysis methodology
influences the whole framework and determines which information we will be able to retrieve.

As described in Section 1.2 there are two main approaches: techniques as abstract interpre-
tation based on symbolic execution that try to simulate the program behavior for all possible
executions or techniques that try to analyze the loops in isolation with a set of static semantic
analyses.

Both approaches have advantages and drawbacks: Approaches such as abstract interpre-
tation allow, in theory, a complete knowledge of the program behavior since all the possible

2.2. LOOP BOUNDING 13

do {
if (A) {

B;
while (C) {

if (D)
E;

else
F;

}
G;

}
} while (H);
I;

A

D

F

G

C

B

E

H

I

J

K

M N

O

P

J :=If-then-else(D, E, F) N :=If-then(A, M)
K :=While(C, J) O :=Repeat(N, H)
M :=Block(B, K, G) P :=Block(O, I)

Figure 2.4: Structural regions for a simple Java program.

executions are simulated.
In practice, due to the number of paths to be analyzed (exponential in the number of executed

conditional branches), the precision of the results is artificially reduced to maintain the size
of the problem manageable. In addition to the maximum number of loop iterations, abstract
interpretation methods are able to detect false or infeasible paths.

Static analyses instead do not suffer from the path explosion problem since they analyze
loops in isolation without differentiating different incoming paths in asymptotically polyno-
mial analysis times. On the other hand the local character of these techniques does not allow
them to consider information regarding more than one loop (or semantic structure) like loop
dependences or infeasible paths.

The choice of the type of analysis for our WCET estimator was driven by the type of ap-
plications that we want to analyze: We target large soft real-time applications and therefore we

14 CHAPTER 2. SEMANTIC ANALYSIS

while (A) {
if (B)

C;
else
D;

}

B

C D

A

Figure 2.5: Loop with more than a back-edge.

if (A || (B && C)) {
D;

} else {
E;

}
F;

A

B

D

F

E

C

Figure 2.6: Region that cannot be represented by a predefined pattern.

need a fast and very scalable analysis that requires a minimal user intervention whereas some
overestimation in the WCET can be tolerated.

To that end, to analyze a loop we choose a local and static approach (described in Sec-
tion 2.4) but as shown in Section 2.3, we do not completely discard the ideas behind abstract
interpretation, which we used, in a simplified way, to find infeasible program paths.

2.3 Partial abstract interpretation

Although our loop bounding technique analyzes the loops in isolation and does not perform any
path enumeration (see Section 2.4) we use a limited form of abstract interpretation to detect
infeasible paths on acyclic code segments.

The main problem of abstract interpretation is that every possible execution trace1 has to
1We define a trace as a sequence of instructions, including branches and loops, that is executed for some input

2.3. PARTIAL ABSTRACT INTERPRETATION 15

W := successors(header)
R := ∅
mark the header as visited
while W 6= ∅ do

node := �W
R := R ∪ node
mark node as visited
if a predecessor of node is not dominated by the header then

(* this means that the header is not a joint node *)
return ∅

end if
for all successors s of node do

if s is not dominated by the header then
(* we do not follow back edges *)
return ∅

else
if s is not visited then

W := W ∪ s
end if

end if
end for
return R

end while

Figure 2.7: Algorithm to detect proper regions.

K

L

M

N

O

Figure 2.8: Snapshot of the proper region detection algorithm.

be considered with the consequence that the number of paths to be analyzed is exponential in
the number of conditional branches that will be executed. In fact, at every loop iteration the
number of possible paths is doubled increasing the necessity to merge and reduce the gathered

data.

16 CHAPTER 2. SEMANTIC ANALYSIS

information.
To avoid the path explosion problem we do not iterate over loops and we limit the interpre-

tation to linear code segments. In this way we are clearly not able to bound loops and we are not
able to store any information relative to a path or partial path that crosses the loop boundaries.
Nevertheless we are able to detect a number of false paths (see Section 2.3.5) and to bound the
possible values an induction variable can assume at runtime (see Section 2.3.6).

2.3.1 Partial linear paths

We define a partial linear path as a part of a complete method trace that does not cross a loop
boundary. This may include linear code snippets as well as loop bodies and does not exclude
paths containing a loop header. If we consider Figure 2.4 both partial paths ABCGH and DE
are valid partial linear paths while BCD is not a valid linear path since it crosses the border of
the loop While(C,D,E,F) (ABCGH includes the loop header C but does not include blocks
inside and outside the loop at the same time).

We define the border of a loop as the set of basic blocks that have both edges connecting
them to blocks in the loop and edges connecting them to blocks outside the loop (the loop border
is composed by the loop header and all blocks ending in a conditional branch that could cause
the loop to terminate).

The choice to focus on linear paths instead of working with general program traces (as for
a classical abstract interpretation pass) allows us to perform the analysis in exponential time
over the number of conditional jumps present in the program whith a small known constant. In
this case we only consider the presence of a conditional jump and not how many times it could
be executed since we do not consider cyclic partial linear paths. Table 2.1 lists the number
of analyzed partial linear paths for a number of benchmark applications, showing the limited
number of paths that have to be executed in the abstract domain. The table also lists the total
number of sets of integer intervals needed for the abstract interpretation and loop bounding
passes along with their maximum and average length (i.e., the number of intervals in the set).

These benchmarks demonstrate that the restriction of the analysis to partial lineal paths and
the confinement of the environment representation to integers (see Section 2.3.2) keep the size
of the set of intervals small and manageable.

Table 2.1: Size of the abstract domain representation.

Benchmark Size (LOC) Partial linear paths Set of intervals
Number Max. length Av. length

201 compress 574 2 891 3 773 7 1.2
205 raytrace 1 978 26 138 3 0.9
209 db 664 313 1 854 7 0.8

JavaLayer 5 816 8 050 12 141 5 1.5
Scimark 756 233 1 860 3 0.7
Whetstone 128 12 465 1 0.7

2.3. PARTIAL ABSTRACT INTERPRETATION 17

2.3.2 Representation of the abstract domain

The aim of abstract interpretation is to observe the program behavior by executing it, or part of it
in our case, in an abstract domain. The representation of the values of the elements (variables)
in the abstract domain and the operations that we can perform on them must be defined so
that they are as precise as possible without leading to incorrect conclusions about the analyzed
program.

The abstract representation of the concrete values must be safe, i.e., it must not include val-
ues that are not possible in the concrete domain and that could lead to a wrong interpretation
of the program behavior. This loose definition allows abstract representation to be a safe ap-
proximation of the concrete domain (approximations are introduced to reduce the calculations
needed at each step and to reduce the number of paths that have to be considered).

To further simplify our approach we decided to consider integer local variables only, for
this analysis. This includes all the Java integer types plus the boolean type but not references.
We do not consider floating point types since their representation would require too much space
and floating point types are rarely used as variables responsible for loop termination. Table 2.2
shows the type of the control variables used for loop termination in a number of benchmarks:
the last column holds the total number of conditional branches with a loop’s control variable
as operand while the third, fourth and fifth columns categorize the type of the variables into
integers, floating point types and object fields (note that these categories are not mutually ex-
clusive).

Table 2.2: Loop control variable types.

Benchmark Size (LOC) Integer Floating point Field Comparisons
201 compress 574 50 (100%) 0 (0%) 10 (20%) 50
205 raytrace 1 978 4 (100%) 0 (0%) 0 (0%) 4
209 db 664 75 (84%) 0 (0%) 4 (4%) 89

JavaLayer 5 816 208 (95%) 2 (1%) 52 (24%) 218
Linpack 291 124 (69%) 55 (31%) 0 (0%) 179
Scimark 756 77 (93%) 4 (5%) 0 (0%) 83
Whetstone 128 26 (100%) 0 (0%) 4 (4%) 89

Limiting the abstract representation to local variables allow us to safely ignore aliasing
problems. Aliased variables in addition to complicate the representation would unnecessarily
increase the size of the abstract representation.

This restrictions are not limiting since the majority of the conditional branches that influence
the program’s execution flow are either integer or boolean comparisons or checks on dynamic
data structures that could not be analyzed at compile time in any case since they are often
dependent on the input set (see Table 2.2).

The simplest way to store the possible values of an integer variable is to represent them as a
set of closed intervals obeying to the following criteria:

• All the variables that are undefined are represented as v ∈] − ∞..∞[in the abstract
domain. Since we limit the analysis to integer types, ∞ and −∞ can be safely represented

18 CHAPTER 2. SEMANTIC ANALYSIS

by the maximum and minimum value of the given type.

• The assignment of a constant c to a variable v is represented as v ∈ [c] in the abstract
domain.

• After a conditional jump that compares a variable v to a constant or another integer whose
possible values are known, we split the interval of possible values in the abstract domain
according to the two different outcomes of the test.
This test can in case of the equality operators (= and 6=) generate integer intervals with
holes, as illustrated by the following example:
{v ∈] −∞..∞[}
if v 6= c then
{v ∈] −∞..c − 1] ∪ [c + 1..∞[}

else
{v ∈ [c]}

end if

For this reason instead of representing variables values in the abstract domain with integer
intervals we store them as sets of disjoint integer intervals.

I =
⋃

i

Ii where
⋂

i

Ii = ∅.

In Java bytecode, boolean checks are simply mapped to integer equality tests with the
constants 1 and 0. This contributes significantly to the presence of set of intervals in the
abstract representation.

• The abstract representation is updated when arithmetic operations are performed on the
concrete variables: For this purpose we defined the most common mathematical opera-
tions (addition, subtraction, multiplication and division) on the sets of intervals.
The operations on two sets of integers are simply, and safely, defined as the set of integers
that represent the result of applying the operation on every couple of elements.

Ii ◦ Ij =
⋃

vi∈Ii,vj∈Ij

vi ◦ vj.

2.3.3 Safe approximations of the abstract domain representation

Even if we do not iterate over loops there are situations where it is advisable to reduce the size
of the representation of the variables in the abstract domain.

The repetition of multiplications between two interval sets can, for example, generate very
scattered sets of intervals. Such a representation can have a negative impact on the analysis
performance.

When the number of paths to be considered or the number of intervals in a set becomes
too large, the analyzer may decide to approximate the representation in the abstract domain by
merging a set of intervals Ii to a unique interval I

I :=
[

min
i

(Ii).. max
i

(Ii)
]

.

2.3. PARTIAL ABSTRACT INTERPRETATION 19

In our case these approximations are performed when the number of elements in a set grows
above a given threshold.

2.3.4 Abstract interpretation

To perform the partial abstract interpretation pass we first compute the topological ordering of
the program’s basic blocks. For this purpose we treat the back edges of all the loops as edges to
every possible exit of the considered loop. In this way we ensure that all the nodes in the loop
body come before all the loop exits in the topological ordering.

We then visit every block in topological order and update the variables’ representation in
the abstract domain. At conditional jumps we duplicate the abstract domain representation for
each outgoing path and we continue the analysis on both paths recursively.

If the conditional jump is at the end of a loop’s header block we follow only the edge that is
not entering the loop (if there is one). Since some of the variables in our environment could be
changed in the loop body we have to remove them from the abstract domain before continuing:
All the variables that are not loop invariant are therefore set as unknown ([−∞..∞]) in the
abstract domain at the beginning of the loop’s header.

We call the representation of the variables in the abstract domain for a given path an envi-
ronment. Such an environment contains a partial linear path and a series of set of intervals for
all the local integer variables that are not undefined on the given partial linear path.

The same algorithm is also recursively applied to the loop bodies allowing us to analyze the
loop local behavior of the considered variables.

2.3.5 False paths

The first important result that we can derive from the partial abstract interpretation analysis is
that, using the abstract environment, we can automatically detect some infeasible or false path.
A false or infeasible (partial) linear path is a sequence of basic blocks which cannot be executed
under any circumstance.

Having the possible values for all the integer local variables on every path for some con-
ditional branches, it is possible to determine if the tested condition is not satisfiable for some
environments.

Figure 2.9 shows a synthetic short linear program with some false paths. When the analysis
reaches block F the following abstract domain environments have been computed:

ABD {par ∈ [0], pos ∈ [1]}
ABE {par ∈ [1..∞[, pos ∈ [1]}
AC {par ∈] −∞.. − 1], pos ∈ [0]}.

After analyzing block F we have:
ABDFH {par ∈ [0], pos ∈ [1]}
ABDFG {par ∈ [0], pos ∈ [1], pos ∈ [0]}
ABEFH {par ∈ [1..∞[, pos ∈ [1]}
ABEFG {par ∈ [1..∞[, pos ∈ [1], pos ∈ [0]}
ACFH {par ∈] −∞.. − 1], pos ∈ [0], pos ∈ [1]}
ACFG {par ∈] −∞.. − 1], pos ∈ [0]}.

20 CHAPTER 2. SEMANTIC ANALYSIS

public void foo(int par) {
A boolean pos;
A if (par < 0) {
C pos = false;
B } else if (par == 0) {
D bar0();
D pos = true;

} else {
E bar1();
E pos = true;

}
F if (pos) {
H bar2();

} else {
G bar3();

}
I }

A boolean pos;
 if (par < 0)

B if (par == 0)

F

C pos = false;

T

D bar0();
 pos = true;

T

E bar1();
 pos = true;

F

F if (pos)

G bar2();

F

H bar3();

T

I

Figure 2.9: Example of a program with false paths.

The partial linear paths ABDFG, ABEFG and ACFH are clearly impossible (pos should be 1 and
0 at the same time) and can be marked as infeasible.

If a partial linear false path is composed of a series of blocks with only one successor and one
predecessor the partial linear false path corresponds to dead code which can then be eliminated
by the timing analyzer.

The main difference between this approach with what was proposed by Altenbernd [2] and
later refined by Gustafsson [40] lies in the scope of the analysis: we do not aim to discover
all the possible false paths and we therefore limit the checks to linear code segments. This
important simplification has major implications in the implementation of our approach, which
does not suffer from the path explosion problem and requires almost no approximation of the
values in the abstract domain (see Table 5.1).

2.3.6 Variable ranges

In addition to the detection of partial false paths the abstract interpretation pass gathers useful
control-flow aware information on the range of values a certain variable can assume.

This can not only be used for some classical compiler optimizations like the elimination
of unnecessary array index checks or the reduction of the size of integer variables but can
help to significantly reduce the estimated number of loop iterations—the more we can reduce
the computed set of possible values of the iteration variables, the preciser the loop bounding
algorithm can be (see Section 2.4)—or to introduce an elegant way to express manual code
annotations (see Section 2.7).

2.4. LOOP HEADER BOUNDING 21

2.4 Loop header bounding

Since we limit the abstract interpretation pass to linear code segments we have to rely on an-
other technique to determine the maximum number of loop iterations (in our case a loop-local
analysis). To bound the minimal and maximal number of executions of the loop header we
choose an approach very similar to the analysis proposed by Christopher Healy at Florida State
University [42, 44, 43].

We adapted the basic idea of this method to our language (Java) and integrated the same
data structures (sets of intervals) that we use for the partial abstract interpretation pass (see
Section 2.3.2).

The original method [42] basically consists of four main steps: First the program’s control-
flow graph (CFG) is built and the loops and nodes that could be responsible for loop termination
are identified (they are called iteration branches). These nodes are then linked using a prece-
dence relation representing the order in which these nodes could be executed in a loop iteration.
The resulting directed acyclic graph is called precedence graph. In a second step, for each of
the nodes of the precedence graph (i.e., the iteration branches), it is computed when the condi-
tional jump for each iteration branch could change its result based on the number of iterations.
I.e., the algorithm computes, if possible, the iteration at which the control-flow could change at
such a node. In the next step, we determine the range of possible iterations when each of the
outgoing edges is reached. In a fourth and final step, the maximum (and minimum) number of
loop iterations is computed.

2.4.1 Precedence graph

An iteration branch is, as defined by Healy, a basic block with a conditional jump where the
choice between the two outgoing edges could influence the number of loop iterations. In other
words iteration branches have an outgoing edge to a node outside the analyzed loop, an edge to
the loop header, or an edge to a block which is postdominated by the loop header.

The original algorithm to compute the set of iteration branches I for a loop L with header
H is shown in Figure 2.10. The idea is to iteratively include (1) all the conditional branches
with an edge exiting the loop which have a successor that is postdominated by the header (and
therefore is on all the paths from the header to the exit of loop) or (2) that can conditionally lead
to other iteration branches.

In addition to the set of iteration branches found by the original algorithm, to be able to
handle general loops with complex bodies, we have to include the set of nodes that could con-
ditionally lead to a single iteration branch:

((S1 ∈ I) ∧ (S1 6= S2) ∧ ¬ (S1 pdom S2)) ∨
((S2 ∈ I) ∧ (S1 6= S2) ∧ ¬ (S2 pdom S2))

Sn represents, as in Figure 2.10, one of the successors of block B and I is the set of identified
iteration branches.

The simple example in Figure 2.11 shows a loop body where a node (block 3,
if (i < 3)), which could clearly be responsible for loop termination, is not included in
the set of iteration branches I by the original algorithm.

A loop’s precedence graph is a directed acyclic graph composed by the loop’s iteration

22 CHAPTER 2. SEMANTIC ANALYSIS

I = ∅ {set of iteration branches}
repeat

{H is the header node of the loop L}
for all blocks B ∈ L do

if (B has two successors S1 and S2) ∧ (B /∈ I) then
if (S1 /∈ L) ∨
(S2 /∈ L) ∨
(H pdom S1) ∨
(H pdom S2) ∨
(∃ J,K ∈ I | J 6= K ∧ J pdom S1 ∧ K pdom S2) then

I := I ∪ B
end if

end if
end for

until any change to I

Figure 2.10: Finding iteration branches.

public void foo(boolean a, b) {
2 for(int i=1; i<10; i++) {
3 if(i < 3) {
6 if(a) {
7 break;
15 }

} else {
4 if(i == 3) {
5 break;
14 }
8 }
9 }

}

13 3

2

11

1

0

6 4

5 14157

9

10

8

12

Figure 2.11: Additional iteration branches.

branches and two special nodes: the continue node and the break node representing the back-
edge and the exit of the loop respectively. The graph is constructed collapsing all the nodes that
are not iteration branches, substituting all the back-edges with edges to the continue node and
substituting all the loop exits with edges to the break node as described in [42].

2.4. LOOP HEADER BOUNDING 23

2.4.2 Iteration branches

The next step is the computation of the point in time, in terms of loop iterations, when the
conditional branch of an iteration branch will change its direction. Our implementation is based
again on the algorithm presented by Healy [42] with the introduction of ranges of integers in
the algorithm’s description and implementation. Due to the integration of sets of integer ranges
and to some refinements to handle a broader set of loops than the loops handled by the original
paper, we redefine some of the terms and equations as explained in the following paragraphs.

Each iteration branch is analyzed in isolation by detecting the variables that are compared
in the conditional branch and by understanding how they change before and during the loop
execution.

We only consider comparisons where an integer variable, the iteration variable, is compared
to a constant or to a known range of possible constants that do not change in the loop body
(the majority of loops are conditioned by integer induction variables, see Table 2.2). Once the
iteration variable is determined we try to compute its value before entering the loop and how it
is changed by in the loop body during every iteration (we distinguish between changes before
the iteration branch and changes after the iteration branch).

For each iteration branch we then compute on which iteration N the result of the conditional
branch will change:

N =

⌈
limit − (initial + before) + adjust

before + after

⌉

+ 1

where after and before are the amount by which the iteration variable is changed during each
loop iteration after and before the considered iteration branch (to be able to compute N , both
before and after must remain constant during each iteration). The sum of before and after

gives the direction (positive or negative) of the induction variable increment. If this sum is
0, the result of the jump at the end of the iteration branch will never change, and N is set to
a special value unknown. If N > 0 the result of the conditional branch will change after N
iterations. If N ≤ 0 the conditional branch could have changed before the first iteration (in this
case we say that the change happens in the past).

limit corresponds to the constant value used in the comparison. If limit is not constant, and
its possible values are represented by a set of integer intervals (see Section 2.3.6), we take its
minimum (if direction is positive) or its maximum (if direction is negative). initial is similar
to limit and represents the value of the induction variable when the iteration branch is reached
for the first time, in other words it corresponds to the sum of the variable’s value before entering
the loop and before. In case limit is represented by a set of integer ranges we take its minimum
if direction is positive, or its maximum otherwise.

adjust takes into account the type of the operators compensating the differences among
them. If the induction variable is increased at every iteration, adjust is set to 1 for ≤ and >,
and if the induction variable is decreased at every iteration adjust is set to -1 for < and ≥. For
all the other cases adjust is set to 0 (see Figure 2.12 for an example).

If we are not able to compute one of these variables we assume that we have not enough
information on the iteration branch behavior and we set the value of N to unknown.

An additional check is needed for equality operators (= or 6=) since, in this case, it is possible
that the checked condition will never be met although the variables are growing in the right

24 CHAPTER 2. SEMANTIC ANALYSIS

i = 0;

i < 10

i++;

i = 0;

i <= 10

i++;

N =
⌈

10−(0+0)+0

0+1

⌉

+ 1 = 11 N =
⌈

10−(0+0)+1

0+1

⌉

+ 1 = 12

Figure 2.12: Different adjustments for the computation of N of two sample loops (the loop’s
header and unique iteration branch is shown in gray).

direction (e.g., for(i=0;i==5;i+=2)). We therefore compute if

limit − (initial + before)

before + after

is an integral value, if not we set the value of N to unknown.

2.4.3 Reachability of iteration branches

Once we know when the behavior of each iteration branch might change (i.e., the iterations
when it’s result will be different from the one computed by the first loop iteration), we determine
when the iteration branches might be executed.

We define range(ib) as the iterations on which it will be possible to execute an iteration
branch ib or range(ib0 → ib1) in the case of an edge form iteration branch ib0 to iteration
branch ib1 (ib0 → ib1). As before we adapted the approach presented by Healy to integrate sets
of integer ranges and generalizing it to be able to easily handle infinite loops and loops that are
never executed.

The precedence graph is traversed in a preorder fashion and for each node and edge we store
the set of iterations during which it will be possible to traverse it.

The range of a node, or the set of iterations during which this node could be executed, is
defined as the union of the ranges of all the incoming edges (the header of the loop is treated
differently and we assign a range of [1..∞[to it):

range(ib) :=
⋃

p∈pred(ib)

range(p → ib).

The reason is obvious: every time an incoming edge is executed the node will also be executed.
In the same way we can also define the ranges of the outgoing edges. If the point in time when
the conditional branch of the considered iteration branch will change (N) is unknown, we have
to assume that all the outgoing edges could be traversed in the same iterations as the iteration
branch.

range(ib → s) := range(ib) ∀s ∈ succ(ib).

2.4. LOOP HEADER BOUNDING 25

If, otherwise, N is known we split the set of all possible iterations between what happens before
the change (beforeN) and what happens after and during the change (afterN): this is done by
splitting the entire iteration space and intersecting it with range(ib). If N is in the past (see
Section 2.4.2) we set:

beforeN(ib) := [1] ∩ range(ib)

afterN(ib) := ∅.

Otherwise the two sets are created according the equality operator:

beforeN :=

{
=, 6= : N ∩ range(ib)

<,≤, >,≥ : [1..N − 1] ∩ range(ib)

afterN :=

{
=, 6= : ([1..N − 1] ∪ [N + 1..∞[) ∩ range(ib)

<,≤, >,≥ : [N..∞[∩ range(ib)

Using the value of direction we can determine when the iteration branch will be traversed for
the first time: Given the direction of the loop, the value of the induction variable when it first
reaches the iteration branch (initial+before) and the relational operator we assign beforeN and
afterN to the corresponding outgoing edges.

If at this point we discover that an edge is never executed (its range is empty) we can remove
it from the graph (i.e., we detected an infeasible edge).

2.4.4 Loop header iterations

To determine the number of iterations for the loop header we traverse the precedence graph in
postorder and for each node and edge we compute its exit value, i.e., when this node or edge
could lead to a break (i.e., loop exit).

If an edge e is to a break node then exit(e) := range(e): These are the only points in
the control-flow graph where we can introduce a bound on the number of iterations since these
edges (n e

→ break) are the only locations where a loop can exit. If the edge is to a continue
node we do not have any useful information, and we set its exit value to unknown: exit(e) := ∅.

Otherwise the edge e is leading to an iteration branch ib inside the loop. In this case the
exit value of e basically corresponds to the intersection between the range of the edge e and the
exit value of the iteration branch ib (exit(e) := range(e)∩ exit(ib)). Unfortunately there are a
couple of exception that we have to consider. We distinguish three different cases:

• If the range of e is always smaller then the exit value of ib (max(range(e)) <
min(exit(ib))), it means that the edge will be executed only once: exit(e) :=
[min(range(e))] (the value marked by the arrow in Figure 2.13.a). Even if the inter-
section range(e) ∩ exit(ib) is empty the block will be executed once to perform the test
on the first iteration.

Example: exit(ib) = [1..5], range(e) = [10..20]. In this case the intersection between
exit(ib) and range(e) is empty: The edge will be traversed once (at the 10th iteration)
and the conditional test at the end of ib will cause a loop exit (exit(e) = [10]).

26 CHAPTER 2. SEMANTIC ANALYSIS

• If the intersection of the exit values of the iteration branch and the range is not empty,
it represents the iterations when this edge could lead to an exit: exit(e) := range(e) ∩
exit(ib) (the values marked by the gray area in Figures 2.13.b,c,f).
Example: exit(ib) = [5..15], range(e) = [10..20]. In this case edge will be traversed
from the 10th to the 15th iteration (the intersection between exit(ib) and range(e)).

• If some exit values of the iteration branch are bigger than the maximum range of the
edge it means that the loop is unbounded: exit(e) := [min(range(e) ∩ exit(ib))..∞[
(the values marked by the gray area and the arrow in Figure 2.13.d,e). Note that we use
infinity to denote unbounded ranges.
Example: exit(ib) = [15..30], range(e) = [10..20]. The intersection between exit(ib)
and range(e) is not empty and the edge will be traversed from the 15th iteration. Since
some of the iterations in exit(ib) are bigger than max(range(e)) we are not able to tell
when this edge will lead to a break and we therefore set exit(e) as unbounded (exit(e) =
[15..∞[).

(b)

(c)

(d)

(e)

(f)

∞

∞

range(e)exit(ib) exit(e),

(a)

Figure 2.13: Exit value of ranges: the boxes represent the set of iterations in range(e), the
dashed boxes represent the set of iterations in exit(ib) and the gray area corre-
sponds to the resulting set of iterations in exit(e). The down arrow represents the
set of iterations in exit(e) when the set is composed by a single element as in (a)
or to include ∞ in the set when the sets are unbounded as in (d) end (e).

The exit value of an iteration branch is determined by the union of the exit values of its
outgoing edges:

exit(ib) :=
⋃

ei∈out(ib)

exit(ei)

where out(ib) is the set of edges exiting from node ib.
At the end of the traversal the exit value of the loop header represents the number of itera-

tions the loop header (and hence the loop) will be executed.
The main differences between the computation of the loop header iterations presented by

Healy and Whalley and our implementation lies in the integration of the set on intervals which
allows us to easily work in a uniform way with any operator (e.g., equality operators) and to
cleanly define the algorithm behavior with conditional jumps that are always or never taken.

2.5. IMPROVING THE PRECISION OF THE LOOP BOUNDER 27

2.4.5 Nested loops

The described approach computes the number of loop iterations independently from other cyclic
structures and only consider loops with a constant number of iterations. Inner loops with a vari-
able number of iterations depending on the control variable of the outer loop (see Figure 2.14)
are handled conservatively (i.e., the number of iterations for the inner loop is considered con-
stant).

public void foo() {
int i,j;
for (i=0; i<100; i++) {

for (j=i; j<100; j++) {
bar();

}
}

}

Figure 2.14: Triangular loops: the number of iterations of the inner loop (100 − i) depends on
the control variable of the outer loop (i).

Healy showed that the technique can be extended (with some restrictions) to compute the
number of iterations for triangular loops [42, 43].

2.5 Improving the precision of the loop bounder

A limitation of this method is that although the minimal and maximal number of iterations for
the loop header are a safe bound for every block in the loop, this approximation does not take
into account different paths inside the loop body.

To propagate bounding information from a loop header to each program block we need
precise knowledge of the control-flow graph structure which can be derived from the semantic
structures computed in Section 2.1.

The approach consists in propagating the loop bounds to the whole loop by adjusting the
number of iterations in accordance with the different paths inside the loop body. In this way
we compute a fine-grained per-block bounding information that allows the timing analyzer to
handle infrequently executed blocks inside a loop body separately.

Figure 2.15 shows a simple example where a loop portion (block 4) in executed only once,
and its duration should therefore not be included in each loop iteration. In this case, especially
if the code in the region executed only once is computationally expensive the assumption that
the header bounds are safe for each basic block in the loop is correct but leads to a WCET over-
estimation. This phenomenon can for example be observed in the 201 compress benchmark of
the SPECjvm98 suite where a significant part of the main loop is executed only every 10,000
iterations.

For this reason our WCET estimator performs some additional passes to propagate the
bounds of the loop header to all the blocks adapting them to the different path frequencies.
Since the number of iterations for a block is not directly dependent on the block’s predecessors

28 CHAPTER 2. SEMANTIC ANALYSIS

0 int i = 0;
2 while (i < 128) {
3 if (i == 16) {
4 // code executed once (block 4)

}
5 // code executed at every iteration
5 i++;
6 }

1

2

3

6

4

5

0

Figure 2.15: An example of a loop.

but is, instead, determined by the type of the enclosing semantic construct or structural region,
along with the dominator relation, the bounds cannot be propagated easily to every basic block
by analyzing the graph’s nodes in isolation. Figure 2.16 shows three simple examples of struc-
tural and semantic constructs that influence the number of iterations (shown between brackets)
of a given basic block (striped node). The number of iterations of a block cannot be derived
from its direct predecessors, but only from the header (gray node) of the biggest enclosing struc-
tural region (a While–loop in Figure 2.16.a and an If–then–else in Figures 2.16.b and 2.16.c).
In Figure 2.16.b we assume that we have no information on the conditional branch of the gray
node and we have to conservatively assume that both white nodes could be executed 10 times.

To propagate the loop header bounding information to each block, we perform two main
steps: In a first phase we propagate the minimal and maximal number of iterations along each
loop’s precedence graph (see Section 2.5.1) while in a second phase we spread this information
to every basic block in the control-flow graph (see Section 2.5.2).

2.5.1 Execution counts for iteration branches

Loops are analyzed in isolation starting from the innermost one, allowing a simple handling
of nested structures. Once the set of possible iterations for the loop header (exit(header)) has
been computed (see Section 2.4.4) we propagate these values to the iteration branches with a
top-down traversal of the precedence graph.

The first step consists in the computation of the smallest enclosing cyclic region for each
iteration branch (secr(ib)). This structure is easily found by traversing the list of enclosing
semantic regions stored in each block (see Section 2.1). The smallest enclosing cyclic region
corresponds to the smallest loop that includes the considered iteration branch.

We then define, for each node and each edge in the precedence graph, a range iter repre-
senting the minimal and maximal number of times the node or edge can be traversed. We set
the number of iterations of the loop header to its exit value (i.e., the loop iterations):

iter(header) := exit(header).

2.5. IMPROVING THE PRECISION OF THE LOOP BOUNDER 29

� � �
� � �
� � �
� � �

� �
� �
� �
� �

[1]

[10][1]

[1]

[10]

� �
� �
� �
� �

� �
� �
� �
� �

[10]

[10]

[0..10][0..10]

(a) (b)

� �
� �
� �
� �

� �
� �
� �
� �

[10]

[10]

[5][5]

(c)

Figure 2.16: Examples of block iterations.
.

We then traverse the precedence graph inorder, and for each iteration branch ib and its outgoing
edges e we compute the number of times they can be traversed: iter(ib) and iter(e) respectively.

The iter value of an edge e is determined by its range and the iter value of the iteration
branch ib at the edge tail:

• If N , i.e., the iteration on which the result of the conditional branch at the end of ib will
change direction, is known we distinguish three cases:

– If the range of the edge is always smaller than the iter value of the iteration branch
it means that the edge will always be taken:

iter(e) := [max(range(e))].

– If the range of the edge is always bigger than the iter value of the iteration branch it
means that the edge will never be taken:

iter(e) := [0].

– Otherwise the iter value corresponds to the intersection of iter(ib) and range(e)
normalized to take into account the number of iterations when this edge will be
traversed and not the actual iterations when this will happen:

iter(e) := (range(e) ∪ iter(ib)) − (min(range(e)) + 1).

30 CHAPTER 2. SEMANTIC ANALYSIS

• If N is unknown we do not have any information about when the jump result will change
and we assign the minimal and maximal number of iterations iter of the node i to the iter
value of each outgoing edge:

iter(e) := iter(i).

In a similar way the iter value of an iteration branch ib is determined by the iter values of all the
incoming edges. We determine the presence of inner loops by checking if the smallest enclosing
cyclic region secr(ib) corresponds to the loop we are analyzing.

• If the iteration branch is not in an inner loop (i.e., secr(ib) = loop) and each of its
predecessors p has a known N value, the number of iterations (iter) corresponds then to
the sum of the iterations of the incoming edges:

iter(ib) :=
∑

e∈pred→ib

iter(e).

If one of the predecessors is unknown we don’t have enough information and we have to
conservatively assume that the iter value corresponds to the number of iterations of the
header of the smallest region containing ib. This is given by the fact that given a region
with a single entry point (the header) we can safely assume that every node in this region
will not be executed more often that max(iter(header)).

• If the iteration branch is the header of an inner loop (i.e., secr(ib) 6= loop) we have to
multiply the iter value with the number of iterations of the inner loop. Note that the inner
loop iterations are available since the loops are analyzed starting from the innermost one.

iter(ib) :=
∑

e∈pred→ib

iter(e) · iter(ib).

In addition, we store in the node ib a multiplication factor for the inner loop linner defined
by the region secs(ib) computed as follows:

mul(linner) :=
∑

e∈pred→ib

iter(e).

• Otherwise, for inner loop nodes, we simply multiply the iterations of the inner loop node
ib with the region multiplication factor stored in the header of each inner loop:

iter(ib) := iter(ib) · mul(secs(ib)).

2.5.2 Execution counts for basic blocks

Now that the minimal number and maximal number of iterations of each basic block that could
influence the flow of control of the program (i.e., the iteration branches) are known, we have to
propagate the bounding information to every other block in the graph.

Once again we take advantage of the available structural information and we compute the
number of iterations (iter(b)) for each basic block b. We treat the control-flow graph entry
block differently, setting the minimal and maximal number of iterations to 1:

iter(root) := [1].

2.5. IMPROVING THE PRECISION OF THE LOOP BOUNDER 31

For each node b with a predecessor p we define becr(b, p) as the biggest enclosing cyclic region
containing p and not b. If becr(b, p) exists for at least one predecessor p, it means that the node
b is the exit point of one or more loops and that bcr(b, p) corresponds to the outermost one.

p

b b

p

pheader(becr(b, p))

becr(b, p)

b

p1

header(r)

r

becr(b, p0)

p0

(a) (b) (c)

Figure 2.17: Biggest cyclic regions.
.

If p is the single predecessor of b, and becr(b, p) is empty, we simply copy the range of
iterations of the edge to the node (Figure 2.17.a):

iter(b) = iter(p).

If becr(b, pi) is the same region for all the predecessors pi of b we have detected one or more
loop breaking edges (pi → b), and the number of iterations of b is set equal to the number of
iterations of the loop pre-header (see Figure 2.17.b). A loop pre-header (pheader(l)) is a special
basic block artificially inserted by the compiler acting as a unique loop header predecessor (see
Section 2.1).

iter(b) = iter(pheader(becr(b, p)))

Otherwise, if the predecessors belong to different enclosing regions, we look for the smallest
region r that contains all the predecessors of b and not b itself (Figure 2.17.c). The iter value of
the header of this region is a safe assumption since every path from the source to b will traverse
it (header(r) dom b).

The algorithm in Figure 2.18 summarizes the computation of iter(b) for nodes that are not
iteration branches.

At the end of this phase every basic block in the control-flow graph has a bound on its min-
imum and maximum number of iteration that takes into account the different path frequencies
inside loops.

32 CHAPTER 2. SEMANTIC ANALYSIS

if b = source then
iter(b) = [1]

else
P := predecessors(b)
choose anyp ∈ P
if |P | = 1 ∨ becr(b, p) = ∅ then

iter(b) := iter(b)
else if ∃ r | r = becr(b, pi)∀ pi ∈ P then

iter(b) := iter(pheader(r))
else

r := smallestregion | P ⊂ r ∨ b 6∈ r
iter(b) := iter(header(r))

end if
end if

Figure 2.18: Computation of iter(b).

2.5.3 Complexity

One of the main advantages of the technique described here is that it is able to compute pre-
cise per block bounds in quadratic time over the number of iteration nodes: We are able to
consider the effects of different path frequencies in the loop without the need to perform path
enumeration.

Section 5.6 evaluates the effects of the increased granularity (from loops to blocks) of the
bounding algorithm showing the improvements on the overall WCET estimation.

The computation of the iteration branches and the construction of the precedence graph are
performed in O(B2), where B is the number of basic blocks in the considered loop. The original
algorithm to compute the number of iterations [42] of the loop header and our enhancement to
propagate the bounds to the single basic blocks are both performed in asymptotically linear
time.

Healy and Whalley presented a different approach to enhance their loop bounder [42]
(see Section 2.4) to compute fine grained block bounds using automatically detected value-
dependent constraints [44]. They compute per block bounds analyzing the possible outcome
of conditional branches by looking at the induction variable changes on all the possible paths.
The algorithm has a complexity of O(P) where P is the number of paths in a loop, which is
exponential in B.

2.6 Example

This section presents a small synthetic example to summarize the analysis presented in this
chapter. Figure 2.19 shows a small Java method with two nested loops: the inner loop is exe-
cuted only after 50 iterations of the outer loop and the value of a parameter could determine the
outer loop termination after 10 iterations.

Figure 2.20 shows the control-flow graph for our example with the list of semantic re-

2.7. MANUAL ANNOTATIONS 33

public void foo(boolean somecond) {

int i, j;

for (i=0; i<100; i++) {
if (i < 50) {

if (i > 10 && somecond) {
break;

}
} else {
for (j=0; j<10;) {
j++;

}
}

}

}

Figure 2.19: Example Java program.

gions (dotted lines). The two program’s loops are represented by C = While(8,7,14)
and F = While(10,2,3,4,9,6,13,8,7,14,16).

In the first phase similarly to Healy we identify the iteration branches (8 for loop C and 10,
2, 3, 4 and 8 for loop F) and we construct the respective precedence graphs. On these graphs
as described by Section 2.4.3 we compute when it will be possible to execute the iteration
branches (range). Figures 2.21.a and 2.21.b show the precedence graphs for the inner and
outer loop respectively with the point in time when the conditional jump will change (N) and
the ranges for each node and edge.

In the second phase we compute the minimal and maximal number of iterations for each
loop header with the bottom up traversal described in Section 2.4.4. Figures 2.22.a and 2.22.b
show the precedence graphs with the exit values for each node: The inner loop is bounded with
11 iterations while the outer loop can exit from iteration 12 to iteration 50 or exit at iteration
101.

Although these bounds are a safe assumption for the whole loop, using the algorithm de-
scribed in Section 2.5.1 we compute the range of possible iterations for every iteration branch
in the precedence graph as shown by Figure 2.23.

Figure 2.24 summarizes the propagation of the iteration branches bounds to the whole
control-flow graph. We assign to every basic block a set of ranges representing the possible
number of iterations.

2.7 Manual annotations

The goal of an automatic loop bounder is clearly to reduce or eliminate the need for the pro-
grammers to manually specify loop bounds. There are some cases, though, where the maximum

34 CHAPTER 2. SEMANTIC ANALYSIS

0

1

15

10

2

4

7

8

9

5

11

12

A

B

D

E

H
I

14

13 16

63

G

F

C

A := Block(14,7) B := Block(16,9)
C := While(8, 17) D := Block(19, 13, 6)
E := Block(12,11) F := Natural-loop(10, 2, 3, 4, 18, 20)
G := Block(22, 15, 1, 0) H := if-then(23, 5)
I := Block(24,21)

Figure 2.20: Control-flow graph.

number of loop iterations is dependent on the program input, or where the analyzer is not able
to automatically compute them.

In these rare cases (the majority of the loops in real-time programs have a well defined and
simple structure) the programmer must include comments in the code to manually specify the
bounds.

2.7. MANUAL ANNOTATIONS 35

8
N=11
[1..inf[

continue

[1..10]

break

[11..inf[

10
N=101
[1..inf[

2
N=51

[1..100]

[1..100]

break

[101..inf[
3

N=12
[1..50]

[1..50]

8
N=?

[51..100]

[51..100]

4
N=?

[12..50]

[12..50]

continue

[1..11]

[12..50] [12..50]

[51..100]

[51..100]

(a) Inner loop C (b) Loop F

Figure 2.21: Precedence graphs with iteration ranges.

The simplest way to do this is to modify the code, inserting guards on the variables whose
behavior is unknown to the timing analyzer. Figure 2.25.a shows a simple example where
the timing analyzer is not able to compute the initial value of the variable i, which is input-
dependent. In Figure 2.25.b a simple If–then construct can help the compiler to analyze the
loop (after the partial abstract interpretation pass, see Section 2.3, i is known to have a value
in the interval [0..∞[) and at the same time ensures that the semantics of the annotation will be
enforced at run time.

If the user considers the insertion of additional code an unnecessary overhead the analyzer
allows him to comment the code with special library calls that do not produce any code (the
dummy calls are safely removed before code generation since they do not have any functional
meaning). These annotations are similar to a simplified version of the WCETAn system proposed
by Bernat for their Java WCET analyzer [4]. In our case we only support the specification of
bounds to cyclic structures since we do not need to define paths in the program as for WCETAn
(e.g., to define infeasible paths).

36 CHAPTER 2. SEMANTIC ANALYSIS

8
N=11
[11]

continue

[]

break

[11]

10
N=101

[12..50] + [101]

2
N=51

[12..50]

[12..50]

break

[101]
3

N=12
[12..50]

[12..50]

8
N=?

[]

[]

4
N=?

[12..50]

[12..50]

continue

[]

[] [12..50]

[]

[]

(a) Inner loop C (b) Loop F

Figure 2.22: Precedence graphs with exit values.

The WCETAnnotations.maxLoopIterations(N) defines the maximum number of
iterations N of the first loop following the statement on all the paths leading to the exit of the
control flow graph (i.e., the first cyclic semantic structure that is dominated by the annotation).

Figure 2.26 shows an example where manual annotations are used to specify the maximum
number loop of iterations and the maximum recursion depth. The two method calls are used by
the WCET semantic analyzer to bound the two cyclic structures but no checks are issued at run
time and responsibility for correctness is left to the programmer.

Although annotations for loops are rarely needed, they are necessary for re-
cursive procedures since we do not perform any automatic recursion depth analy-
sis (see Section 2.8.3). The maximum recursion depth can be expressed with the
WCETAnnotations.maxRecursionDepth dummy call. The maxRecursionDepth
annotation works similarly to maxLoopIterations referring to the entry point of a cycle in
the call graph.

2.8. METHOD CALLS AND OBJECT ORIENTATION 37

8
[11]

continue
[11]

[11]

break

[0..inf[

10
[12..50] + [101]

2
[12..100]

[12..100]

break

[0..inf[3
[12..50]

[12..50]

8
[11..550]

[1..50]

4
[1..39]

[1..39]

continue
[12..101]

[11]

[1..39] [0..inf[

[10..500]

[0..inf[

(a) Inner loop C (b) Loop F

Figure 2.23: Precedence graphs iteration counts.

2.8 Method calls and object orientation

The additional level of dynamism in program execution, and therefore the reduced predictability
of object-oriented programs, contributed to their slow acceptance in the real-time world, but in
the last decade Smalltalk [40], Java [11, 38], Oberon-2 [15] and several other languages were
successfully employed in hard and soft real-time projects.

One of the reasons for the introduction of modern languages into the real-time world, in
addition to their popularity among programmers, is that they do not only allow to create more
dynamic programs but often impose some restrictions on the program semantics. Strongly typed
languages without pointer arithmetic like Java and Oberon [105] allow, as in our case, to reduce
aliasing effects, making code analysis more effective.

The major problem of Java and object-oriented programs in general is that they allow the
programmer to use object inheritance to override a method’s implementations, so that the target
of a method call depends on the dynamic type of the owning object. This can greatly enlarge
the call graph and, if every possible target is considered, cause WCET overestimations.

38 CHAPTER 2. SEMANTIC ANALYSIS

0

1

15

10

2

4

7

8

9

5

11

12

[12..101]

[12..100]

[1..50]

[1..50]

[12..100]

[1..39]

[11..550]

[12..100]

[1..1]

[1..1]

[1..1]

[1..1]

[1..1]

[1..1]

[12..50]

[10..500]

[10..500]A

B

D

E

G
H

I

14

13 16

63

F

C

Figure 2.24: Basic block bounds.

2.8.1 Call graph reduction

Strong typing and a careful whole program analysis can help to determine at compile-time the
set of possible targets for each dynamic call (i.e., virtual and interface calls).

Many techniques exist to approximate the call graph and reduce the set of possible targets
for every method call. Our compiler resolves polymorphism at call sites employing a variable
type based analysis (VTA) [96, 102], which computes the set of possible types of the object at
each method call. The characteristic of VTA made a perfect choice for our environment: despite
being flow-insensitive (but context-sensitive) it delivers good results and performs better than
class type hierarchy [3, 26, 32] or rapid type analysis [3] and, more important, needs only one
iteration so it scales linearly with the size of the program.

2.8. METHOD CALLS AND OBJECT ORIENTATION 39

void foo(int i) {
while(i < 10) {
// loop body
i++;

}
}

void foo(int i) {
if (i >= 0) {

while(i < 10) {
// loop body
i++;

}
}

}
(a) (b)

Figure 2.25: User inserted guards.

public void foo(int param) {

/* manual loop bounds */
WCETAnnotations.maxLoopIterations(64);
while(param-- > 0) {

foo();
}

/* manual recursion depth bound */
WCETAnnotations.maxRecursionDepth(16);
factorial(param/4);

}

Figure 2.26: Manual annotations.

2.8.2 Method specialization and inlining

It is often the case that one or more of the values determining the loop termination (e.g., init or
limit, see Section 2.4.2) are dependent on one of the method actual parameters.

Although this in is not a problem for approaches based on symbolic execution, since the
method will be always simulated in the right context, the lack of local information hinders our
loop bounder, which is not able to compute the bounds.

A complex context sensitive intra-procedural analysis could restrict the set of possible val-
ues of the input parameters given a certain context allowing a more precise loop bounding in
the same way as partial abstract interpretation does (see Section 2.3.6). The drawback of this
technique is that it is not always possible to derive a small set of values for the parameters that is
valid for all the possible contexts in which the method is called. On the other hand, it is instead
possible, to inline the method in the caller context. In this way the loop depending on the input
parameter can be analyzed in a specialized version that may allow the compiler to compute the
bounds automatically.

If the call site, where the method has to be inlined, has more than one possible target (i.e., the
type of the object is not known) the compiler inserts guards to guarantee the correct execution
(see Figure 2.27).

40 CHAPTER 2. SEMANTIC ANALYSIS

We inline and specialize a method in the caller context if one or more loops is dependent
from an actual parameter. The maximum inlining depth is bound by a user specified parameter.

Figure 2.27 shows an example: the method foo of Figure 2.27.a is inlined in the caller
context in Figure 2.27.b with an additional guard to check for the type of the object of the
callee. The loop bound can then be easily computed since its upper bound is known in the caller
context.

public class B extends A {

public void foo(int limit) {
int i;
for(i = 1; i <= limit; i++) {
// loop body

}
}

}

[...]
public bar(A o) {
o.foo(42);

}
[...]

public class B extends A {

public void foo(int limit) {
int i;
for(i = 1; i <= limit; i++) {
// loop body

}
}

}

[...]
public bar() {

if (o instanceof B) {
int i;
for(i = 1; i <= 42; i++) {

// loop body
}

} else {
o.foo(42);

}
}
[...]

(a) (b)

Figure 2.27: Method inlining: the method foo in (a) is inlined in the method bar using a guard
to guarantee the correct execution depending on the type of the object o

2.8.3 Recursion

Recursive methods create loops in the call graph which must be bounded to be able to compute
the WCET of the program, but the automatic computation of the maximum recursion depth
is inherently more complex than loop analysis: Recursion can happen anywhere under any
condition and is normally not restricted by semantic or syntactic structures as is the case for
loops.

The easiest way to handle the problem is to forbid recursion in the language and force
the programmers to convert their algorithm to iterative schemes (e.g., by applying program
transformation rules [82]). Real-Time Euclid [55], Real-Time Concurrent C [36] and the MARS
approaches [82, 84] are examples of languages explicitly forbidding recursive subroutine calls.

2.9. DISCUSSION 41

Blieberger showed that direct and even indirect recursion can be constrained and safely used
in real-time systems [10, 9] and, as for call sites with more than one possible target, the problem
can be addressed using abstract interpretation.

As our approach approximates the WCET without path enumeration and therefore avoids
solutions based on abstract interpretation we currently forbid the use of recursion and the user
is required to manually convert recursive algorithms to their iterative corresponding version or
to annotate them (see Section 2.7).

2.9 Discussion

At the end of the different analyses, the semantic analyzer has the final task of structuring
the computed semantic information that will be later used to estimate the WCET on the given
hardware. The control flow graph and the semantic tree (list of semantic regions) are embedded
in the generated assembler files along with the bounds on the number of iterations for each basic
block and the list of partial linear false paths.

We decided to structure our WCET analyzer dividing it into two distinct tools (the seman-
tic and the hardware level analyzers) to increase the flexibility and the portability to different
systems and architectures. This is usually uncommon for approaches based on abstract inter-
pretation because in this case the path enumeration should be done twice (once on the high level
and one on the hardware level). For this reason abstract interpretation based approaches usually
perform the analysis in one pass working directly on the object or assembler code.

The local character of our semantic analyzer has, on the other hand, the advantage to be
coupled with the compiler from the first stages and to rely on high level information which is
normally lost on the assembler level as variables and types.

It is worth noting that although our semantic analysis in based on a Java bytecode com-
piler the techniques presented in this chapter are language independent. The initial structural
semantic analysis allows to easily work on binaries although without variable names and types
and especially in presence of pointer arithmetic, the computation of the point in time when
conditional branches change direction (N) could be more difficult.

3
Hardware-Level Analysis

In addition to computing the semantic behavior of a program a WCET analyzer must compute
or estimate the duration of the produced code. The duration of the instructions is dependent on
the given platform (hardware and system).

The duration of an instruction, which is trivial to compute for some simple architectures
where it is constant and determined by the hardware specifications [13, 78, 75, 82], is becoming
more and more challenging to estimate with the increase of the complexity of modern hardware.
On modern CPUs the duration of an instruction depends on several factors such as stalls in
the pipelines, cache hits or misses, and branch prediction. In other words, the duration of an
instruction cannot always be computed offline but heavily depends on the context where the
instruction is executed.

3.1 Related work

The most simple and conservative approach to compute the effects of modern hardware (notably
caches and pipelines) would be to always consider the worst-case scenario: cache reads always
resolve in misses, branch prediction is always wrong, and all the instructions are dependent on
each other generating a maximum number of pipeline stalls. This resulting WCET estimation,
computed considering the serial execution of the given instructions only, would be formally
correct but overestimated by several orders of magnitude, making it useless [65]. Lundqvist has
recently shown that serial execution does not exactly correspond to the WCET of the application
because of timing anomalies [67]: a cache hit could in some cases generate a longer execution
time than a cache miss.

Like for the semantic analysis, there are two main ways to attack the problem: methods
based on path enumeration (i.e., based on symbolic execution) and methods relying on data
flow analyses. Approaches using symbolic execution usually (but not always) integrate the
semantic analysis to simulate the code only once [31], while data flow based WCET analyzer
can more easily be divided into two distinct tools [41]. The latter approach is pursued here.

3.1.1 Caches and pipelines

Caches and pipelines are the major aspect of modern processors that influences the duration of
an instruction, and several groups improved their WCET estimators to include analyses trying
to reduce the overestimations caused by cache misses and pipeline stalls.

The semantic analyzer from Whalley’s group at the Florida University (see Section 1.2.4)

43

44 CHAPTER 3. HARDWARE-LEVEL ANALYSIS

was complemented by a separate hardware analyzer for the MicroSPARC I processor [41]: this
included an instruction cache simulator able to categorize each instruction by its probability to
generate a cache hit. They also analyzed the different program paths to understand the pipeline
behavior, avoiding to iterate over loops and applied a conservative approximation while merging
the pipeline information for paths inside a loop.

The first MARS method (see Section 1.2.2), which used timing equations, was extended
to support the two stage pipeline of the Intel 80C188 processor [107] and to support path ab-
stractions including instruction reservation tables [62] or instruction dependence graphs [63] to
handle processors with pipelines. Kim, using the timing schema along with data-flow analyses,
was able to reduce the overestimation of dynamic load and store operations [53] (the global
WCET overestimation was reduced in the average by 30% with peaks of 80%).

The third MARS approach [84] which used an integer linear programming (ILP) solver (see
Section 1.2.2) was extended to handle the effects of a set associative instruction and data cache
by adding new rules or constraints to their set of equations [60].

Wilhelm and his group combined their WCET tools based on abstract interpretation [31]
(see Section 1.2.3) with ILP to support the analysis of instruction caches [98]. Abstract inter-
pretation is used to model the architecture’s behavior while ILP is used to find the longest path
using the results from the abstract interpretation pass.

All these approaches assume that the program is executed without interruption or that pre-
emption occurs at predictable points in time. Although this is the case for many hard-real-time
systems, for applications running on some mechatronic operating systems supporting preemp-
tion [15] and for soft-real-time applications running on commodity systems a hardware-level
analyzer has to take into account the effects of asynchronous context switches [37, 28, 52].

Active cache management

A completely different approach to the data cache problem focuses on active management of the
cache. If we can prevent the invalidation of the cache content, then execution time is predictable.
One option is to partition the cache [61] so that one or more partitions of the cache are dedicated
to each real-time task. In this way no conflicts between different processes can occur, and
each application can be analyzed offline regardless of scheduling strategies and preemption. In
addition a careful compile time analysis can also help to prefetch certain memory locations and
arrange them in memory to increase the whole system’s predictability [54].

These approaches help the analysis of the cache access time since the influence of multi-
tasking is eliminated, but on the other hand, partitioning limits the system’s performance [62].
Moreover, cache partitioning requires severe changes to the operating systems and possibly to
the applications, making this option unfeasible for soft-real-time multimedia applications run-
ning on commodity systems.

Static cache locking is another technique that allows to make the cache access times
predictable by selectively locking cache portions [81] or by locking frequently used cache
lines [54, 18].

Both cache partitioning and locking strategies are useful to improve cache predictability and
efficiency but they do not solve the general problem, and they show performance degradation
on large systems.

3.2. STATISTICAL APPROACHES 45

Preemption

Techniques exist to take into account the effects of fixed-priority preemptive scheduling on
instruction caches when the set of running processes is known in advance [57, 16].

When the set of running processed is unknown it is still possible to conservatively take into
account the preemption effects by multiplying the cache and pipeline related costs due to pre-
emption by the maximum number of preemptions that could occur [56, 74, 100]. Experiments
have shown that this assumption is pessimistic (i.e., the preemption cost is much smaller) and
that the overestimation can be reduced by a cache related preemption delay analysis [94].

3.1.2 Branch prediction

Branch prediction schemes further complicate the WCET analysis since the fetched instructions
not only depend on the trace that is considered, but also depend on past executions (of any other
program trace) and the conditional branches included in them.

While this problem can be automatically solved in abstract interpretation based approaches
(if not discarded to simplify the problem, the information on past executions of a given jump
on a determined trace is stored in the abstract domain representation) different strategies were
developed for control- and data-flow based analyses.

Colin and Puaut modeled the prediction table as a direct mapped cache integrating branch
prediction (for local predictors only) in their WCET estimator [20], while Mitra and Roychoud-
hury studied the effects of dynamic branch prediction on WCET analysis and were able to inte-
grate the effects of global branch prediction schemes in their ILP-based WCET estimator [69].

3.2 Statistical approaches

Hardware used in embedded systems is becoming more and more complex. Large mechatronic
systems or soft-real-time multimedia systems are often developed using commodity processors
(e.g., Pentium class or PowerPC processors) that are normally used in desktop systems.

Today’s fast hardware and the increasingly dropping cost of memory contributes to the
growth of the size and complexity of the real-time applications that are run today. These appli-
cations are composed of several thousands of line of code and are sometimes written in modern
object-oriented languages making extensive use of dynamic data structures.

On the other hand the environment where these applications are deployed does not always
require hard-real-time guarantees and therefore in the majority of the cases—especially for
multimedia applications—the timing requirements are softened.

The XO/2 system [14, 15], developed at the Institute of Robotics at ETH Zürich for large
mechatronic applications, is one example of this development. The system runs on PowerPC
processors with two levels of (large) caches, pipelining with instruction reordering and two
levels of branch prediction. The system’s deadline-driven scheduler with admission testing is
preemptive and supports the dynamic loading and unloading of tasks or processes at run time.

It was clear from the beginning that none of the available techniques to perform a WCET
estimation are the ideal tools to be used in such an environment: the dynamism of the XO/2
software and hardware hinders a precise offline WCET analysis.

46 CHAPTER 3. HARDWARE-LEVEL ANALYSIS

We therefore implemented a WCET estimator based on a mixed approach: the semantic
attributes of the control-flow and call graphs were computed precisely while some components
of the instruction duration as the effects of the caches were determined heuristically [21].

3.2.1 XO/2 WCET estimator

The XO/2 WCET estimator is implemented as a module for the XO/2 Oberon-2 PowerPC com-
piler [71]. It is able to perform a simple but effective loop analysis restricted to loops with
a single exit point and a unique induction variable (the user has the additional possibility to
manually annotate the code to specify the bounds).

The novel aspect of the approach is the hardware analysis (i.e., the estimation of the in-
structions durations). The technique is a trade-off between a precise approach, which requires
a lot of resources and a complete knowledge of the scheduled tasks, and heuristic approaches
completely based on measurements.

Given the precise computation of the maximum number of block iterations, the duration of
an instruction is approximated by mixing the static characteristics of the processor, given by
the manufacturer, and the dynamic components of the time needed to execute it, determined
experimentally with an on-chip performance monitor (see Section 4.3).

To compute the duration of an instruction, normally expressed using the cycles per instruc-
tion (CPI) metric, we divide the instructions duration into its major components to achieve a
better granularity.

As defined by Emma [30], the total CPI for a given architecture can be expressed as the sum
of an infinite-cache performance and the finite-cache effect (FCE). The infinite-cache perfor-
mance is the CPI for the core processor under the assumption that no cache misses occur, and
the FCE accounts for the effects in cycles of the memory hierarchy. On the program level the
FCE can be expressed as:

FCE := (miss penalty) · (miss rate). (3.1)

Since the memory effects are one of the CPI components that are derived from run-time mea-
surements we had to adapt our model to the information that the PowerPC performance monitor
can gather (see Section 4.3.2). The performance monitor considers the instruction cache miss
penalty as part of the instruction unit fetch stall cycles and not a cache miss forcing us to include
data references only in FCE.

The instruction duration separation into finite- and infinite-cache performance is not enough
to obtain a good grasp of the processor usage by the different instructions, and we therefore
further divide the infinite-cache performance in busy and stall time:

CPI := busy + stall
︸ ︷︷ ︸

Infinite cache performance

+FCE. (3.2)

where the stall component corresponds to the time the instruction is blocked in one the pipelines
due to some hazard (e.g., a data dependence).

The PowerPC processor has a superscalar pipeline and may issue multiple instructions of
different types simultaneously (one floating-point, one branch, one compare, one memory and
three integer operations). For this reason we differentiate between the stall and busy component

3.2. STATISTICAL APPROACHES 47

for each execution unit; let parallelism be the average number of instructions that are simulta-
neously in the respective execution units, stallunit be the number of cycles the given instruction
stalls in the execution unit, stallpipeline be the number of cycles the instruction stalls in the other
pipeline stages (fetch, decode, dispatch, completion or write-back), and execunit the number of
cycles spent in an execution unit. The CPI for an instruction can then be expressed as:

CPI :=
execunit + stallunit

parallelism
+ stallpipeline + FCE. (3.3)

For each instruction of a basic block we use Equation 3.3 to approximate the instruction’s dy-
namic duration. The difficulty lies in obtaining a correct mapping between the static description
of the processor and the dynamic information gathered with the runtime performance monitor to
compute the components of Equation 3.3. The details are explained in the following paragraphs.

Finite cache effect

The PowerPC 604e performance monitor delivers precise information about the mean number
of load and store misses and the duration of a load miss. Because of the similarity of the load
and store operations [49], we can work with the same miss penalty and compute the FCE, in
cycles, as follows:

FCE := (miss rateload + miss ratestore) · penaltyload. (3.4)

Pipeline and unit stalls

Unfortunately, the performance monitor does not provide precise information about the stalls
in the different execution units and the other pipeline stages (the performance monitor was not
designed to be used for program analysis, and our predictor had to map the data gathered to
something useful for the WCET estimation).

The first problem arises in the computation of the mean stall time in the different execution
units as the performance monitor delivers the mean number of instruction dependences that
occur in the reservation stations of the execution units only (a reservation station is a small
two-entries queue in front of each execution unit). This number is not quite useful, because
a dependence does not necessarily cause a stall, and we must find other ways to compute or
approximate the impact of stalls.

The mean stall time for instructions executed by a single-cycle execution unit is easily com-
putable as the difference between the time an instruction remains in the execution unit and its
normal execution duration (i.e., 1). Let idleunit be the average measured idle time in a cycle
(for an execution unit), and loadunit be the average measured number of instructions handled in
a cycle (at most 1):

stallunit :=
1 − idleunit

loadunit

− 1. (3.5)

Unfortunately the execution time of an instruction in a multiple-cycle execution unit is not
constant, and Equation 3.5 cannot be used. Thanks to Little’s theorem applied to M/M/1 queues
we can compute the mean length of the reservation station queue Nq (at most 2) and then
approximate the mean stall time stallunit as follows (let ρ := 1−idleunit be the unit’s utilization

48 CHAPTER 3. HARDWARE-LEVEL ANALYSIS

factor (arrival/service rate ratio), and pdep the reported number (probability) of dependences):

Nq := max

(
ρ2

1 − ρ
, 2

)

(3.6)

(1 − stallunit · loadunit)
Nq = 1 − pdep (3.7)

stallunit :=
1 −

Nq
√

1 − pdep

loadunit

. (3.8)

We assume that an absence of reported dependences corresponds to the absence of stalls in the
execution unit (Equation 3.7).

A similar problem is present in the computation of the mean number of stall cycles in the
dispatch unit: Seven different types of stall are reported for the whole four-instruction queue.
We have no way to know how many instructions generate stalls, or how many different stalls
are caused by the same instruction. These numbers, however, are important for the understand-
ing of the dynamic instruction durations, because they include the effects of instruction cache
misses and influence all the processed instructions. Several experiments with a set of simple
well-understood test programs revealed that a reported stall can be considered as generated by a
single instruction. The test programs were specially crafted by including different data depen-
dencies to generate pipeline stalls and observe their effects on the performance counters. With
pevent the reported number of stalls of a given type and

∏

event(1 − pevent) the probability no
instruction stalls, we can compute the probability that an instruction stalls:

stalldispatch :=

CPI ·

(

1 −
∏

event

(1 − pevent)

)

queue size
(3.9)

The stalls in the dispatch unit (stalldispatch) also consider stalls in the fetch stage and can be
substituted for stallpipeline in Equation 3.3.

The need to heavily rely on statistics and queuing theory in the approximation of the pipeline
behavior is determined by the granularity (or lack of it) of the hardware measurement tools
we have at our disposal. Nevertheless, experimentation with small synthetic kernels to stress
pipeline stalls shows the soundness of our mapping from the measured dependences to the
actual stalls.

Execution duration

The normal execution duration (i.e., the execution time without stalls) of an instruction for
single-cycle units is known from the processor specifications, but the multiple cycle units (FPU,
MCIU, and LSU: Floating Point Unit, Multiple Cycle Integer Unit, and Load Store Unit) have
internal pipelines that cause different throughput values depending on the instruction type. As
a consequence there is no way to know the duration of a given instruction, even if the caches
and pipeline stalls are not considered. The presence of preemption, and consequently the lack
of knowledge about the pipeline status, forces us to approximate this value.

The architecture specifies, for each instruction, the time to execute it (latency) and the rate
at which pipelined instructions are processed (throughput).

3.2. STATISTICAL APPROACHES 49

We define dunit as the approximation of the maximal distance in the instruction flow be-
tween two instructions that can be pipelined by the same execution unit. We then consider an
instruction pipelined, in the execution unit, if there was an instruction of the same type in the
last dunit instructions (execunit := thoughput), otherwise we consider the instruction dura-
tion to correspond to the integral computation time (execunit := latency); the value of dunit is
computed experimentally and varies—depending on the unit—from four to eight instructions.

Since the XO/2 instruction-duration analysis is done on a basic block basis, the approxima-
tion for the first instruction of a given type in a block is computed differently:

pinstruction := 1 − (1 − loadunit)
dunit (3.10)

execunit :=

{

latency if pinstruction < threshold

throughput if pinstruction ≥ threshold
(3.11)

Where pinstruction is the probability that a given instruction type was present in the last dunit

instructions and threshold is an experimentally determined value representing the probability
that a given instruction will be found in dunit instructions.

To check how this approximation works in practice and to refine the dunit and threshold
values, we compare for some test programs known mean instruction durations, obtained with
the runtime performance monitor (see Section 4.3), with the predicted ones, confirming the
soundness of the method.

Instruction parallelism

We compute the mean instruction parallelism (parallelism) solving Equation 3.3 and consider
mean values over the whole task execution, due to the impossibility to get finer grained informa-
tion. Furthermore, the task cannot be interrupted (or instrumented) to check the performance
monitor; otherwise interference in the task’s flow would destroy the validity of the gathered
data. The FCE is taken into account only for the instructions handled by the load/store unit
(utilunit corresponds to the utilization factor of the given unit).

parallelism :=
exec + stallunit

CPI − stalldispatch − utilLSU · FCE
(3.12)

To compute the mean instruction’s execution duration exec (needed by Equation 3.12), the
mean stall value computed earlier can be used. We first compute the mean execution time of the
instructions handled by a given execution unit (execunit)—in the same way as the stalls were
approximated for the single cycle units.

execunit :=

{

1 single cycle units
1−idleunit

loadunit
− stallunit multiple cycle units

(3.13)

Finally, we compute the total mean instruction duration (exec) as the weighted mean of all the
instruction classes:

exec :=
∑

unit

(utilunit · execunit) (3.14)

The duration of each instruction of a basic block can then be computed by applying Equation 3.3
with all the computed elements (execunit, stallunit, parallelism, stallpipeline and FCE).

50 CHAPTER 3. HARDWARE-LEVEL ANALYSIS

Heuristic and static information

The duration of an instruction is therefore computed using a mix of information derived from
the CPU and system documentation, and data collected during some test runs of the application.

The latency and throughput of the different instructions along with the first level cache miss
penalty are described in the CPU manual while the miss penalty of the second level of cache
can be derived from the system description.

At run time we measure the first and second level cache hit probability (miss rate), the time
the different execution units are idle (idleunit), their load (loadunit) and their utilization factor
(utilunit).

Since, contrarily to the WCET measurement by experiment, we do not sample the appli-
cation running time but we only measure the application’s behavior (average cache usage and
pipeline stalls), we do not need many measurements to generate sound WCET estimations. It
is thus not important to cover all the possible executions (a task that is impossible for many
applications) but we must only gather information on the pipeline and cache usage of the given
process.

Results

Testing the soundness of a WCET predictor is a tricky issue. To compare the computed value to
a measured maximum execution time, we must force execution of the longest path at runtime.
Such control of execution may be difficult to achieve, especially for big applications, where
it may be impossible to find the WCET by hand. By consequence the WCET that we can
experimentally measure is an estimation and could be smaller than the real value.

We tested our approximator with several simple tasks with a known and measurable WCET
and with some bigger applications running on mechatronic systems based on the XO/2 system
(see Table 3.1).

Task Measured time Predicted time Overestimation
Matrix multiplications 279.577 ms 310.533 ms +11%
Matrix multiplications FP 333.145 ms 351.753 ms +6%
Array maximum 520.094 ms 555.015 ms +7%
FP array maximum 854.930 ms 814.516 ms -5%
Runge-Kutta 439.905 ms 495.608 ms +13%
Polynomial evaluation 1 251.194 ms 1 187.591 ms -5%
Distribution counting 2 388.816 ms 2 579.051 ms +8%
LaserPointer::Watchdog 290 µs 287 µs -1%
LaserPointer::Planner 297 µs 298 µs 0%
LaserPointer::Controller 730 µs 1 071 µs +47%
Robojet::TrajectoryQ 8 µs 8 µs 0%
Robojet::TrajectoryN 339 µs 399 µs 0%
Robojet::TrajectoryX 164 µs 183 µs +12%
Hexaglide::Learn 65 µs 65 µs 0%
Hexaglide::Dynamics 286 µs 451 µs +58%

Table 3.1: WCET for some sample XO/2 applications.

3.3. THE ROAD TO PARTIAL TRACE SIMULATION 51

For the majority of the tests with a known and measurable WCET (first part of the table) we
achieve a prediction within 10% of the real value, and we avoid significant underestimations of
the WCET. The second part of the table presents the WCET estimation and measurement for
the real-time kernel of some real applications. LaserPointer is a laboratory machine that moves
a laser pen on the tool-center point of a 2-joints (2 DOF) manipulator. Hexaglide is a parallel
manipulator with 6 DOF used as a high speed milling machine [46] (the two real-time tasks we
profile contain a good mix of conditional and computational code). Robojet is a hydraulically
actuated manipulator used in the construction of tunnels [47] (we profile three periodic real-
time tasks that compute the different trajectories and include complex trigonometric and linear
algebra computations). The overestimation for some of the mechatronic kernels lies in the fact
that the measured time is not the real WCET, which is unknown, but only the highest duration
that we are able to measure. Trigonometric functions are a good example of the problem:
The predictor computes the longest possible execution, while, thanks to optimized algorithms,
different durations are possible at runtime. It is obviously difficult, or often even impossible, to
compute an input set such that each call to these functions takes a maximum amount of time.
We must therefore take into account that the experimentally measured maximum duration is
probably smaller than the theoretical maximum execution time.

More details about the implementation and a more comprehensive analysis of the results
can be found in [21].

In summary, for the real applications, our technique produces conservative approximations
yet avoids noticeable underestimations of the WCET. Inaccuracies in the WCET estimation can
only be caused by the approximation of the effects of caches and pipelines but not on the wrong
understanding of the semantics of the program. These results demonstrate the soundness of the
method for real-world products showing that a mixed approach with a precise semantic analysis
and an approximated hardware analysis can safely compute good WCET estimations.

3.3 The road to partial trace simulation

The implementation of the WCET estimator for the XO/2 system described in Section 3.2.1
shows that a mixed approach (with a precise semantic analysis and an approximation of the
instruction duration estimation) allows to analyze systems with a dynamic set of processes and
preemptive multitasking delivering sound results for complex soft-real time applications.

To broaden the applications that we could use for the tool evaluation we refined both the
semantic analyzer (as described in Chapter 2) and the hardware analyzer, reducing the amount
of statistical information needed to compute the estimation (see Section 3.4). We also moved to
a Linux platform on Intel processors and focused on the WCET estimation of fairly large soft-
real-time Java applications running on commodity hardware (e.g., multimedia applications).
This new hardware and software environment presents the same set of problems as the XO/2
system: the system is highly dynamic, and the set of running processes along with the preemp-
tion points are unknown. On the other hand the new environment offered us a larger amount of
applications and did not require hard constraints on the computed WCET.

52 CHAPTER 3. HARDWARE-LEVEL ANALYSIS

3.4 Partial trace emulation

As described in Chapter 2 our worst-case execution time approximator is composed of two
tools: a machine independent semantic analyzer and a language independent instruction dura-
tion estimator.

The analyzer produces commented assembler files that, in addition to the native code, are
enriched by additional semantic information: an annotated syntax tree for each method, the
bounds of each basic block, the list of false paths, and the set of targets of each call. The
hardware level estimator can then, from the input assembler files, easily reconstruct the structure
of the program.

3.4.1 Locality

Our approach tries to compute a sound estimation of the instruction duration without precise and
complete knowledge of the set of running processes on systems which support task preemption.
For this reason we cannot predict when the analyzed process will be interrupted and therefore
we cannot predict the state of the caches and pipelines when the process will be selected again
for running.

As for the semantic analysis we have therefore decided to approach the problem locally
without a global analysis and without simulating all the possible paths in an abstract domain.

Our idea is based on the principle of locality, limiting the effects of an instruction to a
limited period of time: We assume that the effects of an instruction on the pipeline and caches
will fade over time and that they will be no longer relevant after a certain number of executed
instructions. In other words, the effects on the caches and pipelines of an instruction i in a given
program trace are relevant only for the limited set of instructions following instruction i (the
number n of relevant instruction is arbitrary and defined heuristically).

For every possible execution trace going through an instruction i we therefore define a par-
tial trace t(i, n) as the set of the last n instructions prior to i on that particular trace. Using the
principle of locality, a partial trace also defines the set of instructions that could influence the
duration of i on that given execution trace.

Although it would be more straightforward to use time (cycles or seconds) to define the
length of a partial trace (instead of the number of instructions) that compose it, to do this we
would need the duration of the various instructions that we still have to compute. The length of
a partial trace does not directly influence the result of the WCET computation and only a rough
estimate is necessary to build partial traces long enough to exploit the principle of locality. For
this purpose we consider the number of executed instructions as directly proportional to the
time it will take to execute them.

According to this definition, if we consider a particular path in the program and an instruc-
tion i (see Figure 3.1) only the instructions that are part of the partial trace t(i, n) (in gray in
Figure 3.1) can influence the duration of i. It also follows that everything that is before the
instruction is in this particular path can be ignored for the computation of the duration of i.

We simulate the CPU behavior (pipeline and instruction cache) for the n instructions in the
partial trace t. The duration of i given the partial trace t (duration(i, t)) can then be computed
by looking at the time, in cycles, needed to execute the instruction at the end of the short

3.4. PARTIAL TRACE EMULATION 53

B0 B1 B3B2 B4

n

iis

Figure 3.1: Partial trace and principle of locality.

simulation (see Section 3.4.2). The first n − 1 instructions are used to warm up and initialize
the simulator, which can then time the execution of the last instruction in the right context.

We define T (i, n) to be the set of unique partial traces of length n that end in i (i.e., i is the
last instruction of the partial trace) and we define the WCET of an instruction i as:

WCET (i) := max
t∈T (i,n)

(duration(i, t)) .

I.e., we compute the duration of i on every partial trace of length n which ends on i, and we
conservatively consider the worst case only. The partial traces in the set T (i, n) are limited in
number by n and can be computed by a simple backward path enumeration pass (limited up to
a certain path length).

To limit the number of traces that must be simulated, some optimizations are possible: Par-
tial simulation results (e.g., the state of the pipeline) are cached and can be reused if the initial
part of two traces is the same (this is particularly effective if we force traces to begin at basic
block boundaries). Furthermore the same trace simulation can be extended to the following
instructions as long as no jumps are encountered. We call the inclusion of all the instructions in
the same block as the first instruction of the trace t and all the instructions in the same block as
the last instruction of the trace t a partial trace extension of t.

i

B0 B1 B3B2 B4

n

Figure 3.2: Trace extensions.

Figure 3.2 shows an example of the trace extensions: the trace t(i, 11) (dark gray instruc-
tions) is extended in the past to the beginning of block B1 and in the future to the last instruction
of block B3 (light gray instructions).

This trace extension adds a small number of instructions to the trace but on one hand in-
creases the probability that the initial part of the trace simulation could be used again (there
might be more than one partial trace beginning in the same block). On the other hand, thanks
to the additional blocks at the end, we can safely continue to simulate the code and record the
duration of the whole block (B3). This is possible since no jumps or jump targets can disturb
the flow of execution (which is guaranteed to be uninterrupted until the end of the block).

54 CHAPTER 3. HARDWARE-LEVEL ANALYSIS

loop

C
[11], 10 instr

D
[10], 2 instr

I
[1], 6 instr

E
[3], 15 instr

F
[7], 3 instr

G
[10], 6 instr

H
[10], 0 instr

A
[1], 2 instr

B
[1], 0 instr

J
[1], 0 instr

Figure 3.3: Partial traces: for each basic block we depict the name, the range of possible itera-
tions in brackets and the number of instructions composing the block. The shaded
area represents a loop.

Figure 3.3 shows an example control-flow graph (for each node the number of iterations is
shown together with the number of instructions in the basic block). The set T (H, 23) represents
all the unique partial traces ending in the first instruction of block H with a length of 23 instruc-
tions. In this example T (H, 23) is composed of HGFDCBA, HGED, and HGFDCHG. In addition
we assign to each trace a weight w based on how many times it will be executed:

w(t ∈ T) :=
min
b∈t

(max (iter(b)))

max
b∈T

(max (iter(b)))
.

The weight is computed using the minimum number of iterations of all the blocks that
compose it and does not necessarily correspond to the actual number of times the trace will be
executed. In our example: w(HGFDCBA) = 1/11, w(HGED) = 3/11, and w(HGFDCHG) =
7/11. Note that in our example the tool is not able to determine if the partial path HGED will be
executed in the first cycle and is therefore part of HGFDCBA.

3.4.2 Partial trace simulation

To simulate the instruction cache and pipelines behavior of a partial trace we implemented
a basic cycle precise simulator using a simplified Intel Pentium II processor [50] model (see
Figure 3.4). For every clock tick we evaluate the state of the different CPU units keeping track
of the instructions we are interested in. The following paragraphs describe which processor

3.4. PARTIAL TRACE EMULATION 55

elements are considered in the model and how our simulator handles them.

L2 Cache

Bus Interface Unit

L1 ICache

Fetch/Decode
Unit

L1 DCache

Unit
Dispatch/Execute

1 2 3 1 2 3 4 5

Unit
Retire

System Bus

Instruction Pool

Fetch Load Store

Figure 3.4: Simplified CPU model.

Pipeline

The Pentium Pro pipeline can be broadly divided in three main stages: a fetch and decode phase,
a dispatch and execute phase and finally a retire phase (see Figure 3.4).

Fetch and decode. The fetch and decode unit fetches one 32-byte cache line at atime from the
instruction cache and decodes it to the internal micro-ops. Every IA-32 instruction is decoded
to one or more pre-programmed micro-ops which are then passed to the instruction pool. The
unit can decode up to six mirco-ops per clock tick.

Instruction pool. The instruction pool holds from 20 to 30 micro-ops, which are then dis-
patched to the correct execute unit in any order. The Pentium processors are able to dispatch
micro-ops out-of-order using Tomasulo’s algorithm[99] to minimize the stalls caused by data
dependences.

The instructions are then dispatched to several execution units divided among five ports
(pipelines). Several execution units can execute micro-ops on each pipeline, but only one micro-
op per cycle can be fed to a port.

To be able to correctly simulate the dispatching mechanism we therefore need to know the
dependences (i.e., the def-use chains) among the micro-ops on the analyzed path. Since paths
are simulated in isolation the simulator can simply keep track of the dependences during the
traversal.

56 CHAPTER 3. HARDWARE-LEVEL ANALYSIS

Execution. The five execution pipelines processes the instructions according to their type.
Since the execution of some operations can depend on the values of the operands we consider
the worst-case scenario.

Retire unit. The retire unit has the task to reorder the micro-ops and can process up to three
instructions per clock tick.

Memory operations

Partial trace simulation does not allow us to simulate the data cache behavior since at the be-
ginning of the instruction sequence (i.e., the partial trace) the memory and data cache states are
unknown. For this reason we do not currently model data dependences in memory and we as-
sume that a write to a store buffer will not influence the instruction duration. Assuming enough
memory to handle the process and assuming that no swap space is present (all the processes
fit in memory), our model, similarly to the XO/2 predictor (see Section 3.2.1) uses a statistical
approximation of the memory accesses, computing the cost, in cycles, of a read (cread) in the
following way:

cread := cL1hit
+ (1 − pL1hit

) · (cL2 + (1 − pL2hit
) · cM)

Where pLlhit
is the measured average probability to have a hit on the cache level l, cLlhit

is the
cost of a cache hit on level l and cM is the cost of a memory read. The values for cL1hit

,cL2hit
and

cM are determined statically by the Intel specifications [50] while the global hit probabilities for
the whole program are determined empirically by measurements (see Section 4.3) performed
on several test runs of the analyzed application.

Possible heuristics Even if partial trace evaluation does not allow a precise data cache sim-
ulation some heuristic assumptions can help to reduce the cache overestimation. A points-to
analysis could help to identify the references pointing to a single object. The references could
the be assumed to generate a cache hit if found inside loops.

Although more complex heuristics and analyses could improve the analyzer knowledge of
the accessed memory, our simple approximation is sufficient to estimate the memory effects on
computation intensive applications (see Chapter 5)..

Branch prediction

To estimate the effects of branch prediction we use the bounds on the maximum number of basic
block iterations computed with the static semantic analysis (see Section 2.5.2). We consider the
probability of a branch from a block b to a block s as:

pbranch(b,s) :=
max(iteredge(b,s))

max(iterb)

where iteredge(b,s) is the number of times we will jump from b to s, and iter(b) is the number
of times that block b will be executed. Comparing the expected CPU behavior described in
the documentation with our predicted branch direction we can estimate how often a branch
misprediction will occur.

3.4. PARTIAL TRACE EMULATION 57

Discussion

Our partial trace simulator is based on a simplified model of the Intel CPU and its accuracy
could be improved by a complete cycle precise Pentium Pro simulator, but to the best of our
knowledge no such tool is available in a form that allows its integration in our WCET estimator.

Although several aspects as the instruction reordering and the cache model are handled
in a very simplified way our simple model delivers results that confirm the soundness of the
approach (see Chapter 5).

3.4.3 Longest path

Once we have the worst-case execution time of each instruction we can easily compute the
duration of a basic block b as the sum of the durations of all the instructions i it contains:

WCET (b) :=
∑

i∈b

WCET (i)

Since, due to pipelining, an instruction execution could be spread over the execution of two
basic blocks, we define the duration of a basic block as the time between the beginning of the
execution of its first instruction to the last clock tick before the beginning of the execution of
the first instruction of the next block.

If traces are extended to finish on block boundaries (see Section 3.4.1) the length of a block
is simply the time resulting from the simulation of the block at the end of the trace (see Fig-
ure 3.2).

To be able to compute the longest path from a method source to the method exit, we must
transform the control-flow graph representation removing structural cycles: For every loop we
remove the back edges from our representation and replace them with an edge to all the possible
loop’s exit points. We then update the weight of each basic block, multiplying it with the
block’s maximum number of iterations (the initial weight of a block is defined as its worst-
case execution time). We obtain an acyclic representation of the control-flow graph that retains
information about block iterations in the form of nodes weights. Note that cycles are removed
from the representation only, and that we do not perform any loop unrolling on the actual code.
Figure 3.5 shows an example: The back-edge (4 → 2) of the loop (Loop(2,3,4)) is removed
and substituted with a set of edges to the loop’s exit points (4 → 5 and 4 → 6). The weights
w of the blocks are updated according to the maximum possible number of iterations of each
block.

To find out the longest path from the entry to the exit block of the graph which is not a false
path there are essentially two different approaches: The first one transforms the graph in such a
way that false paths are removed from the graph. An algorithm that allows to do this efficiently
for very large graphs has been presented by Blaauw, Panda and Das in [8]. The algorithm was
conceived for the field of digital circuit optimization, where the encountered graphs are far more
complex and bigger than the ones that must be dealt with in computer programs.

The second and simpler approach is to compute the k longest structural paths in the graph—
where k is a user-defined parameter—and then choose the longest of these paths that is not a
false path. An efficient algorithm for finding the k longest paths in a directed acyclic graph
efficiently has been proposed by Yen, Du and Ghanta in [106] which is able to perform the path

58 CHAPTER 3. HARDWARE-LEVEL ANALYSIS

1
[1], w = 10

2
[1..11], w = 10

3
[0..10], w = 10

5
[1], w = 10

4
[0..10], w = 10

6
[1], w = 10

7
[1], w = 10

8
[1], w = 10

1
[1], w = 10

2
[1..11], w = 110

3
[0..10], w = 100

5
[1], w = 10

4
[0..10], w = 100

6
[1], w = 10

7
[1], w = 10

8
[1], w = 10

(a) (b)

Figure 3.5: Virtual loop unrolling: for each block we depict the number, the number of possible
iterations in brackets and the weight w.

enumeration in logarithmic time when k is small. The problem of this algorithm is that for our
particular case, where false paths also have to be considered, there is no sensible way to define
the parameter k. Depending on the particular program instance being analyzed, it could turn out
that all k longest paths are in fact false paths. In such a pathological case, the only assertion that
can be made is that the longest non-false path is shorter than the k-th longest path, but the actual
longest path is not known. Despite this problem, the algorithm is efficient and relatively easy
to implement. Since program graphs are relatively small—the number of nodes in the graph is
rarely greater than a couple of hundred nodes—it is sufficient to write a modified version of the
algorithm of the second approach, in such a way that no user-defined parameter k is needed (the
algorithm adaptively increases the factor k depending on the presence of false paths).

Distance to the exit node In a first phase the algorithm computes the longest distance d from
each basic block to the control-flow graphs exit node. The nodes are processed in reverse
topological order computing the maximum distance (in time) to the exit node:

d(B) := WCET (B) + max
p∈pred(B)

(WCET (p))

For each node we then sort the successors according to their distance to the exit (in decreas-
ing order). In absence of false paths the WCET corresponds to the distance from the entry to
the exit node (d(entry)).

Path enumeration If this longest path (Pmax := 〈entry, b1, b2, . . . , bn, exit〉) contains a false
partial linear path (see Section 2.3.5) we try to find an alternative path by choosing a different

3.4. PARTIAL TRACE EMULATION 59

successor for one the blocks bi (see Figure 3.6). Since the number of possible paths is exponen-
tial in the number of conditional branch nodes of the graph, the algorithm only considers paths
that are longer than a threshold value T.

P := Pmax

mark all the blocks in P as visited
if P does not contain a false partial linear path then

return P
end if
T := |P | {initialize the threshold value}
{backward trace}
look backward for a bi which has a non visited successor
while bi exist do

b′i+1 is the non visited successor of bi with the highest distance from the exit node
if duration of the path up to b′i+1 > T then
{forward trace}
P is completed by choosing the successors with the highest distance from the exit node
P ′ := 〈entry, b1, b2, . . . , bi−1, bi, b

′

i+1, b
′

i+2, . . . , b
′

n, exit〉
mark b′i+1 as visited
if P ′ does not contain a false linear path then
{update the current longest path and the threshold}
P := P ′

T := d(entry) along P
end if

end if
{backward trace}
look backward for a bi which has a non visited successor

end while
if P does not contain a false linear path then

return P
else

{all the paths are infeasible}
return ∅

end if

Figure 3.6: Finding the longest non-false path.

Method calls. Method calls are handled by traversing the call graph in depth-first order and
inserting the maximum duration of all the possible callees at the corresponding call site.

3.4.4 Complexity

The limited length of the user-chosen partial traces length limits the number of paths, and con-
sequently the number of instructions, that we must consider for simulation. For a program with
N instructions, B basic blocks and a partial trace length of n, our analysis has to simulate a

60 CHAPTER 3. HARDWARE-LEVEL ANALYSIS

maximum of

O

(

2

„

B·n
N

−1

2

«

· B · n

)

= O
(

2(B·n
N) · B · n

)

= O(B)

steps. Where B
N
· n is the number of blocks in a trace and 2(B/N ·n−1)/2 is the number of partial

traces to be simulated. Since n (the length of a partial trace) and N
B

(the average number of
instructions per basic block) are constant, the total running time is in the asymptotic case linear.

The small number of paths is a consequence that considering partial traces, instead of real
program traces, the time needed to simulate the code does not depend on the number of loop
iterations, which normally contributes to the exponential path explosion problem, but depends
only on the number of conditional branches in the code (a static property).

3.5 Summary

In this chapter we presented one possible backend for our semantic WCET analyzer. The dy-
namism of our environment suggested us to approximate the computation of the instruction
duration on the given hardware platform using simulations of short program trace snippets.

We have shown on two different platforms (XO2 on PowerPC [21] and Linux on Pentium
Pro [22]) that a mixed approach that includes heuristic information or that approximates the state
of the various CPU components can safely estimate the WCET for soft-real time processes.

The approximations performed by the hardware-level analyzer can only have a limited im-
pact on the total WCET estimation since the bounds on cyclic structures are safely computed
and an eventual over- oder underestimation is only dependent on the caches and pipeline stalls
approximations.

4
Implementation

This chapter presents issues related to the chosen software and hardware platform: In partic-
ular we describe the challenges derived by the choice of a modern object-oriented language
like Java (see Section 4.1) and the implementation of our analyzer as part of a general purpose
native-to-bytecode compiler (see Section 4.2). Finally we describe the software and hardware
infrastructure we use to measure the processor and system performance and behavior (see Sec-
tion 4.3).

4.1 The Java language

The importance of the Java language in the real-time is quickly growing [45]: despite its ad-
vanced memory management and high dynamism (with class loading and unloading at run-
time), the Java language has a lot of characteristics that make it a good choice for embedded
and real-time programming. The language, as many other modern languages, offers, for ex-
ample, an environment without pointer arithmetic (thanks to enforced strong typing) and with
automatic array index checks. These two features alone help the embedded programmer to
write safer code and to enhance predictability: the absence of pointer arithmetic strongly re-
duces aliasing effects improving the results of automatic analyzers.

In the last years three proposals for real-time programming with the Java language origi-
nated from different industry groups: the first was drafted by Kelvin Nielsen from NewMonics
and the National Institute for Standards and Technology (NIST) [76, 1], the second by Greg
Bollella from IBM and the J-Consortium (a group of companies lead by HP and including
NewMonics) [38] and the last one by a Java expert group chartered under the Java community
process lead by Sun, working on real-time Java extensions (this group also included several
other companies, some of them involved in the J-Consortium as well).

Despite some differences in the proposals—some industries wanted a heavily modified lan-
guage with some ad hoc constructs for hard-real-time programs, while Sun insisted in keeping
the Java spirit and did not want any change in the language itself—the three groups merged in
1998 and their joint efforts resulted in a set of requirements which led to the Real-Time Specifi-
cation for Java (RTSJ) [11, 12].

This section gives a short overview of the real-time Java specifications explaining the posi-
tion of our approach in respect to the current deployment of Java in the embedded world.

61

62 CHAPTER 4. IMPLEMENTATION

4.1.1 Scheduling and event handling

The RTSJ does not specify a specific scheduling strategy (although every implementation is
required to have at least one implementation of a real-time scheduler) but emphasizes the need
of timely execution of threads. Each implementation should also provide a lock mechanism
implementation that prevents priority inversion allowing a real-time safe synchronization. The
Java exceptions mechanism is also extended to allow applications to programmatically change
the point of control of another thread.

The requirement for real-time scheduling emphasizes the need of predictability of the real-
time Java process. This aspect played a central role in the J-Consortium specification drafts
(they contained strict restrictions on the code to make it analyzable) but lost importance in the
final specifications.

4.1.2 Memory management

The RTSJ provides several extensions to the memory management to overcome the unpre-
dictable latencies of garbage collectors. The RTSJ introduces the concept of memory areas, dif-
ferentiating several allocation (and deallocation) strategies. In addition to the classical garbage
collected objects it is possible to allocate immortal objects (never removed) and to allocate
scoped objects (their lifetime is defined by a syntactic scope).

Immortal objects can be safely used by a real-time application since no external garbage
collection mechanism will ever interrupt the execution, but on the other hand a careful offline
analysis is needed to ensure that the applications will never allocate more memory than available
(see Section 5.10).

4.1.3 Our approach

With this thesis we want to show that it is possible to safely approximate the maximum time a
soft-real-time Java application needs, for large real-time applications (including soft-real-time
multimedia applications). For this reason instead of focusing on a reduced set of the Java
programming language, or focusing on a specific RTSJ implementation, we decided to work on
unmodified single-threaded Java code.

We therefore target unrestricted Java applications emphasizing the generality of the analysis
as we want to handle in addition of real-time Java programs written with timeliness in mind,
normal multimedia applications.

4.1.4 Multi-threading

The presence of more than one thread of the same application on a preemptive system has
several implications for a WCET analyzer.

First of all the semantic analyzer (see Chapter 2) must take into account that another thread
could change object fields at any time: As we consider only local variables for our loop bound-
ing analysis (see Section 2.4.2) this does not directly affect our algorithm (but an extension of
it that considers object fields as possible loop control variables would have to perform escape
and alias analyses to ensure the consistency of the data).

4.2. THE COMPILER 63

Resource locking, on the other hand, makes the computation of one thread’s WCET, in the
general case, impossible. The time a thread would have to wait for a shared resource does not
only depend on conditions known at compile time, and therefore the presence of locking makes
an automatic analysis very difficult. The main difference between the lock analysis and the loop
bounds problem, which also suffers from the undecidability of the halting problem, is that while
loops frequently depend on local variables, locks involve shared resources often related to the
underlying system. For this reasons our analyzer does not support locking constructs but our
loop bounding analysis, which does not consider object fields for loop termination, is robust
with respect to multi-threading.

The presence of multiple threads, on the other hand, does not affect the hardware-level
instruction duration analyzer (see Chapter 3), which already considers the presence of preemp-
tion.

4.2 The compiler

Our WCET estimator is embedded as a module in a general purpose research Java ahead-of-
time bytecode to native compiler. This tight integration allows us to take advantage of the many
analysis and optimizations that are not normally employed in a standalone WCET analyzer but
that can greatly improve the results.

An example are the intermediate representation in static single assignment form [25] on
which we perform a classical set of optimizations (e.g., constant folding, copy propagation,
common subexpression elimination) and the advanced call graph reduction algorithms (see Sec-
tion 2.8.1). These whole-program analyses, although not directly related to the timing analysis,
help on hand to gather preciser information on the loop induction’s variables and on the other
hand to reduce the set of possible targets for each method call. As an example, we were able
to reduce the number of unbounded loops from 12% for the Linpack benchmark to 57% for
the JavaLayer application (see Section 5.2.1) by propagating and folding constants only. The
variable type based analysis, was able to reduce the average number of targets per method calls
by around 5%.

The WCET analysis is performed as a last step just before the code generation phase to
ensure the consistency of our analysis with the produced code (i.e., the control-flow and call-
graphs will not be changed).

4.2.1 Memory management

Our bytecode-to-native compiler relies on parts of the GNU Compiler for the Java Program-
ming Language [33] (version 2.96) for the runtime system: namely memory allocation, garbage
collection, and thread management. The compiler also relies on the Classpath libraries [34] for
the implementation of the core Java classes.

We are therefore not able to analyze JVM functionalities as memory management or the
native implementation of part of some core classes. Characteristics of native methods (memory
and WCET) must be consequently manually specified with code annotations (see Section 2.7).

64 CHAPTER 4. IMPLEMENTATION

4.3 Hardware-level measurements

Precise measurements of the processor usage by the analyzed processes are crucial: on one hand
to determine the exact duration of a test run and on the other hand to have detailed information
on the behavior of the different hardware components to tune the hardware level estimator.

4.3.1 On-chip performance monitoring units

Modern processors as the Motorola PowerPC, the DEC Alpha, the Intel Pentium (from the Pro
version on) and the MIPS R10000 have an on-chip performance monitoring unit that is able to
perform cycle precise measurements about the CPU behavior. Examples of the measured values
are: clock cycles, stalls at the various pipeline stages, cache misses and their penalties, and
branch predictor performance. The performance monitoring hardware can be usually switched
on and off at any time allowing very fine grained measurements.

Performance monitors were not specifically designed to help in program analysis but to
better understand processor performance and, due to pipelining, the performance monitor events
are usually not precisely reported at the right time. Events could be signaled some cycles after
the event has taken place [27]: at the time we stop the measurements some instructions could
be halfway in the pipeline and they could be visible to certain events only. As an example we
can consider the Intel Pentium Pro Processor, which has a buffer of 20 instructions and two
levels of branch prediction: when the measuring process is started or stopped, the events related
to these instructions cannot be precisely accounted since it is not known if they will be really
executed or not (instructions in the pipeline at a given point in time could be later discarded due
to a branch misprediction). For a given event, we can therefore just keep summary data over a
large number of instruction executions.

This means that in the general case the gathered data is sufficient to evaluate how the pro-
cessor performs but is too coarse to precisely understand the correlation between a particular
event and the instruction generating it.

In addition many events are not disjoint, and the performance monitors are not usually able
to report their intersection. Consider, e.g., stalls in the dispatch unit of a PowerPC 603e: seven
different stall types are reported, but there is no way to know how many apply to the same
instruction (up to four instructions of six different types could be in the dispatch queue when
the event is reported).

4.3.2 XO/2 measurements

The XO/2 system (see Section 3.2.1) runs on PowerPC processors and specifically, our tool
is using a PowerPC 604e on VME boards with several megabytes of RAM (depending on the
application).

The PowerPC 604e performance monitor [59, 86] offers four 32 bit counters that can be used
to monitor 40 unique events. For each counter it is possible to simply count the occurrences of
given event or to decrease the counter each time the event occurs and trigger an interrupt when
the counter reaches zero. The performance monitoring is controlled with a bit in the process
status register, which is process specific and is saved across context switches (i.e., the monitor is
automatically switched on and off when the process is scheduled and suspended). This feature

4.3. HARDWARE-LEVEL MEASUREMENTS 65

helps us to gather data only on the task of interest and avoids interference from other processes.
Although the input-triggering solution allows a safe usage of the counters since there is no

risk of overflow (232 events can quickly happen on a 200MHz machine and even faster on a
2GHz machine), the addition of unnecessary interrupts was not acceptable for the XO/2 real-
time system.

Instead, we check the values of the counter at each scheduler period storing the measured
values in a per-process structure (the XO/2 scheduler is called often enough to avoid counter
overflows). In this way one counter must be relinquished to measure the clock cycles between
each preemption point leaving the other three counters free for the actual measurements. On the
other hand the bookkeeping overhead is minimal (i.e., we do not require additional interrupts).

Since the XO/2 WCET analyzer needs information on more than three different events (see
Section 3.2.1) we have either to make several measurement runs, each one with a different
set of events, or to alternate the measurements during the same run and consider the average
behavior only. The second approach divides the execution in segments and, for each segment,
we measure three of the needed events. The tool iterates over the list of needed events ensuring
that each one is measured the same amount of time. For each event we compute the average
value for one segment and we then approximate the behavior on the program level of a certain
event, with the average value in the measured segments.

Both approaches deliver, with a negligible difference, the same results (real-time kernels
have a homogeneous usage of the CPU) and we therefore require only one run reducing the
complexity and the duration of the test phase.

4.3.3 Linux measurements on Intel Pentium processors

From the Pentium Pro family on, Intel Pentium processors include an on-chip performance
monitoring unit [7, 88] that allows the user to count specific events with two 40 bit special
purpose registers.

As for the PowerPC, we use this facility to measure (over several passes) the exact dura-
tion in cycles of the program, the number of cache misses and their penalties, and the branch
predictor performance of the analyzed processes.

The Intel performance monitor does not have the possibility, as the PowerPC one, to mark
one process for monitoring but only provides mechanisms to start and stop the counters regard-
less of which process is running. For this reason, we modified the Linux scheduler to keep track
of the running processes and only measure the processes we are interested in.

We therefore performed the following changes to the Linux kernel:

• We added a module with a new set of system calls to manipulate the counters and the
registers to configure the performance monitor (these instructions can only be executed
in privilege mode and hence in kernel space).

• We inserted additional fields in the process descriptor storing if the process is currently
monitored and the temporary values of the counters between context switches.

• We created a new special device to perform the user and kernel space communication via
the ioctl mechanism.

66 CHAPTER 4. IMPLEMENTATION

• We included a check at every context switch to see if the current process must be moni-
tored, and we included a small event count bookkeeping routine when a monitored pro-
cess is suspended.

We provide both the possibility to measure the program behavior with a separate tool or to
instrument the code to gather fine-grained data on a per-method basis.

In contrast to the XO/2 approach where the different events where measured in alternation
during one single test run, the Linux measurement tool automatically performs several runs
avoiding to reconfigure the counters during the test. Although this solution lengthens the time
needed to analyze an application it allows us to minimize the required changes to the kernel,
easing maintenance and portability. In addition we are also able to better profile applications
with an heterogeneous usage of the CPU since measurements of different events are not alter-
nated during one run.

4.3.4 Discussion

Both the Pentium and the PowerPC monitoring systems offer a plethora of events than can be
monitored, but these units were not specifically designed to be used to perform precise mea-
surements and to clearly describe the performance behavior (see Section 4.3.1).

This means that in both cases (XO/2 on PowerPC and Linux on Intel) we lacked the possi-
bility to gather data as the stalls in the execution units for the PowerPC, that could have been
very useful. We therefore had to rely on approximations to compute the processor behavior as
explained in Sections 3.2.1 and 3.4.2.

Although on-chip performance monitoring units are generally badly documented and they
lack a standardized system support they have a general utility in addition to their classic ap-
plications as chip design debugging and high-end application tuning. Both the XO/2 and the
Linux hardware-level analyzer show that the measured processor behavior can not only help on
the analyzer evaluation (see Section 5.1) but also on the WCET estimation (see Chapter 3).

5
Evaluation

Testing the soundness of a WCET predictor is a tricky issue since, for complex examples,
the real maximum execution time is difficult or even impossible to measure. To compare the
estimated values with the measured time we must force the execution of the longest path, which
is not normally known. Another option to experimentally determine the WCET would be to
measure the applications with all the possible direct and indirect inputs. This approach is clearly
impossible for the majority of the nontrivial cases.

Since the simulation of all the possible executions is not feasible we validate our tool by
comparing the computer WCET estimation with the measured longest running time for small
known synthetic applications where the real longest path is known or computable by hand (see
Section 5.4). If these tests yield good results and the validity of the hardware-level analyzer is
confirmed, the WCET of larger applications can be estimated but no direct comparison with the
real WCET is possible (see Section 5.5).

Section 5.1 presents the software and hardware environment we used to evaluate our WCET
estimations. Section 5.3 describes the effects of the partial abstract interpretation pass presented
in Section 2.3. Sections 5.4, 5.5 and 5.6 show the estimations of various benchmarks along
with the improvements due to the introduction of semantical analysis. Section 5.7 categorizes
the loops according to their possible number of iterations. Section 5.8 shows the number of
manual annotations needed by the loop bounder while Section 5.9 describes the effectiveness
of the automatic inlining (see Section 2.8.2). Section 5.10 describes the results of a maximum
memory allocation analysis, and the last section shows the resources needed by our analyzer
and its impact on the compilation time.

5.1 Testing environment

One of the most difficult issues in the implementation of a WCET analyzer lies in the evalua-
tion of the results. The output of the semantic analyzer can, for small programs, be analyzed
manually by carefully comparing the source code with the computed bounds on the number of
iterations for each basic block. This technique allows to quickly identify problems and to easily
establish a direct relationship between the results and the corresponding semantic structures.

But on the other hand, the output of the hardware-level analyzer (i.e., the WCET itself)
captures a global property and it is difficult to relate an eventual over- or under- estimation to
the corresponding part of the analyzed program.

To tune and debug the hardware-level estimator during the development, and to later validate
it, we included the possibility to gather the same information on the processor behavior that we

67

68 CHAPTER 5. EVALUATION

can measure using the on-chip performance monitor (see Section 4.3). In other words, both the
hardware-level monitor and the hardware-level estimator deliver the same statistics (e.g., cycles
per instruction, branch prediction performance and memory related penalties).

5.1.1 Platform

All the measurements in this chapter are performed on a 1GHz Intel Pentium III machine with
512MB of RAM running our patched version of the Linux 2.4.22 kernel (the patches as de-
scribed in Section 4.3.3 allow the reading and writing of the on-chip performance counters and
keep track of the measurements between context switches). We use a multiprocessor Pentium
IV 1.4GHz machine with 8GB of RAM for the compilation and the hardware-level analysis.

5.2 Benchmarks

This section describes the benchmarks that we use the evaluate the WCET estimation performed
by our tool. We divide them in two groups: simple benchmarks where the WCET is known and
measurable and some bigger application benchmarks where a manual analysis in infeasible.

5.2.1 Small synthetic kernels

• BubbleSort on random arrays [93].

• Division performs integer divisions.

• ExpInt computes several exponential integrals [93].

• Jacobi performs Jacobi successive over-relaxations (SORs).

• JanneComplex is the Java version of janne_complex from the Uppsala WCET bench-
mark package in [93].

• MatMult multiplies several integer matrices.

• MatrixInversion inverts several integer matrices.

• Sieve is an implementation of Eratostene’s sieve.

5.2.2 Application benchmarks

• 201 compress is part of the SPEC JVM Client 98 benchmark suite [97]. It is an im-
plementation of the Lempel-Ziv (LZW) compression algorithm [104]. It basically finds
common substrings and replaces them, with a variable size code. To make it bounded
in time, we removed the file input and output mechanisms (we compress 4KB of data in
memory).

• JavaLayer [51] is a pure Java library that decodes, converts and plays MP3 files (in our
benchmark we decode some sample MP3s to raw audio data).

5.3. PARTIAL ABSTRACT INTERPRETATION 69

• Linpack is a benchmark [29] containing various codes from the Linpack library collection
which analyzes and solves linear equations and linear least-squares problems.

• SciMark 2.0 [80] is a composite Java benchmark measuring the performance of numerical
kernels occurring in scientific and engineering applications (FFT, SOR, sparse matrix-
multiply, Monte Carlo integration, and dense LU matrix factorization).

• Whetstone is a benchmark [24] intentionally written to measure computer performance
and designed to simulate floating point numerical applications.

5.3 Partial abstract interpretation

Partial abstract interpretation (see Section 2.3) is effective in two ways: it helps to discover false
paths and, in some cases, reduces the possible values a variable can assume at a certain program
location.

Table 5.1 shows the number of false paths that our estimator was able to discover for a
number of benchmarks from the SPEC JVM98 suite and for the JavaLayer decoder (see Sec-
tion 5.5). Most of these programs are not bound in time and a complete WCET analysis is not
possible, but these benchmarks show that although we consider linear paths only, the partial
abstract interpretation pass is able to discover several infeasible paths on real applications.

Table 5.1: Infeasible paths.

Benchmark Infeasible paths
201 compress 2
202 jess 3
205 raytrace 7
209 db 2
213 javac 240
222 mpegaudio 19
228 jack 22

JavaLayer 238
Linpack 2
SciMark 0
Whetstone 0

In some time-bound benchmarks we discovered some infeasible paths that are indeed the
longest paths in the program. These false paths when considered as valid during the analysis
cause some WCET overestimation (in the case of JavaLayer by 1%).

In addition to discover infeasible paths the context sensitive computation of the range of
possible values of local variables showed to be useful to help the loop bounder to determine
the maximum number of loop iterations. Table 5.2 shows the number of times the range of
values of a variable helped to compute the iteration bound on an otherwise unbounded loop (see
Figure 2.25 for an example). This number includes the occurrences when the lower (or upper)

70 CHAPTER 5. EVALUATION

limit or the initial value of the loop’s control variable are determined by a range of possible
values. The second column lists the total number of analyzed loops.

Table 5.2: Partial abstract interpretation results used for loop bounding.

Program Loop bounding improvements Loops (total)
due to ranges of possible values

201 compress 1 17
JavaLayer 1 117
Linpack 8 24
SciMark 7 43
Whetstone 0 14

These results show the usefulness of the introductory partial abstract interpretation pass,
which in addition to allow the user to insert annotations in a clean and safe way (see Section 2.7)
also allows to increase the number of automatically bounded loops (see Section 5.6) and helps
to reduce WCET overestimation due to infeasible paths.

5.4 Small synthetic kernels

For many large applications the WCET is not known and is, due to the complexity of the code,
not manually computable. For these examples, it is therefore impossible to enforce the execu-
tion of the longest path and validate our estimation: we cannot, in the JavaLayer example, craft
a special MP3 input which will generate the longest running time.

The best way to validate such a tool is therefore the comparison of the results for small
known synthetic applications where the real longest path is known or computable by hand (Bub-
bleSort, Division, ExpInt, Jacobi, JanneComplex, MatMult, MatrixInversion, and Sieve).

Table 5.3 shows the results for the small benchmarks: the first two columns identify the
benchmark showing the number of loops, while columns three and four show the measured and
estimated WCET finally the last column shows the WCET overestimation.

All the measurements were executed on a standard Linux system with a small load mini-
mizing the interference effects of other programs.

These small synthetic benchmarks show the soundness of the analysis: we never underesti-
mate the WCET and all the results are close to the measured longest running time.

5.5 Application benchmarks

After the validation of both the semantic and the hardware-level analyzer on small synthetic
benchmarks, this section presents the results obtained with bigger applications. The challenge
in the evaluation of bigger applications is that the actual WCET of the applications is not known
and that it is not possible to force the execution of the WCET at run-time with a specially crafted
input.

5.5. APPLICATION BENCHMARKS 71

Table 5.3: WCET estimations of small kernels.

Measured EstimatedProgram Loops [cycles] [cycles] Overestimation

BubbleSort 4 9.16·109 1.53·1010 67%
Division 2 1.40·109 1.55·109 10%
ExpInt 3 1.28·108 2.38·108 86%
Jacobi 5 0.88·1010 1.08·1010 22%
JanneComplex 4 1.39·108 2.48·108 78%
MatMult 6 2.67·109 2.73·109 2%
MatrixInversion 11 1.42·109 1.55·109 10%
Sieve 4 1.29·1010 1.40·1010 9%

In principle, these real-life programs could be tested using a “black box” approach with the
execution time as result. In this case testing consists of maximizing the result function, i.e., the
dynamic path length, varying the input data and submission time [83, 73]. Unfortunately, this
approach is not feasible with real applications where the amount of input data is huge.

We therefore compare our estimation with the highest running time we observe over several
runs of the analyzed applications (201 compress, JavaLayer, Linpack, SciMark and Whet-
stone).

Table 5.4 shows for each benchmark the number of classes, methods, and loops. Observed
corresponds to the maximum observed running time (in cycles) while Estimated is our WCET
estimation. The WCET estimation is almost always (with the exception of the SciMark bench-
mark) relatively close to the highest observed running time confirming the soundness of the
method.

The reasons for the WCET overestimation of the SciMark benchmark is twofold: on one
hand the benchmark uses several mathematical functions (e.g., trigonometric functions) that
normally take less time than in the worst case and on the other hand the benchmark contains
triangular loops (i.e., the number of iterations of the inner loop is dependent on the iteration
count of the outer loop). Our semantic analyzer treats triangular loops conservatively by as-
suming the same maximal number of iterations for the inner loop at each outer loop iteration
(see Section 2.4.5).

Table 5.4: WCET estimations.

Observed EstimatedProgram Classes Methods Loops [cycles] [cycles] Overestimation

201 compress 13 43 17 7.20·109 1.05·1010 46%
JavaLayer 63 202 117 6.09·109 1.18·1010 94%
Linpack 1 17 24 1.40·1010 2.72·1010 94%
SciMark 9 43 43 1.91·1010 1.22·1011 538%
Whetstone 1 7 14 1.86·109 2.11·109 13%

72 CHAPTER 5. EVALUATION

5.5.1 Tuning and evaluation of the partial traces length

The length of the partial traces we simulate to estimate the duration of an instruction i or a block
(see Section 3.4) represents the number of instructions executed before i that could influence its
duration (e.g., by modifying the caches or by blocking the pipeline).

Experiments show that after a threshold increasing the partial traces length does not change
the WCET estimation any more since the additional instruction that are simulated are not able
to influence the duration of the analyzed instruction.

Figure 5.1 shows the WCET overestimation of the 201 compress benchmark: if the length
of the partial trace is sufficiently long (100 instruction) the result of the hardware-level WCET
estimator is stable. The same behavior can be observed by the other benchmarks.

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100 120 140 160 180 200

O
ve

re
st

im
at

io
n

n

Figure 5.1: Influence of the partial trace length (n) on the overestimation of the 201 compress
benchmark.

5.6 Effects of semantic analysis

Structural analysis allows to propagate the bounds on the maximum number of iterations of a
loop header to all the loop’s basic blocks, taking into account different path frequencies (see
Section 2.5). Table 5.5 shows the results for some benchmarks where this propagation is able
to reduce the WCET overestimation. The first column represents the maximum execution time
that we were able to observe (in cycles), while the second and the third are the estimated WCET
using the conservative assumption that the header bounds are safe for the whole loop (see Sec-
tion 2.4), and our enhancement (i.e., the ability to consider different path frequencies in a loop
body).

Three tests (201 compress, JavaLayer, and Scimark) present some improvement over the

5.7. REPRESENTATION OF RANGES OF ITERATIONS 73

Table 5.5: Effects of semantic analysis.
Maximum observed Estimated EnhancedProgram [cycles] [cycles] [cycles]

201 compress 7.20·109 4.26·1012 (59 066%) 1.05·1010 (45%)
JavaLayer 6.09·109 1.35·1010 (121%) 1.18·1010 (94%)
Linpack 1.40·1010 2.72·1010 (94%) 2.72·1010 (94%)
SciMark 1.91·1010 1.82·1011 (852%) 1.22·1011 (538%)
Whetstone 1.86·109 2.11·109 (13%) 2.11·109 (13%)

base algorithm that bounds the number of iterations of basic blocks using the loop headers
only (see Section 2.5). 201 compress shows a huge improvement since our algorithm is able
to detect that a significant part of the compressor main loop is executed only every 10’000
iterations. The small synthetic kernels show no improvement since their simple structure does
not present any different path frequencies inside loop bodies.

5.7 Representation of ranges of iterations

The introduction of the sets of disjoint ranges as a common data structure for both the partial
abstract interpretation and the loop bounding pass allows us to easily handle loops with non-
continuous ranges of possible iterations (i.e., ranges with holes). Table 5.6 shows the number
of loops that have a constant number of iterations (i.e., the minimum and maximum number of
iterations overlap). The number of loops that have a noncontinuous set of iterations is shown in
the last column.

Table 5.6: Loop header iterations representation.

Program Loops (total) Range representation Noncontinuous representation
suffices needed

BubbleSort 4 2 2
Division 2 2 0
ExpInt 3 3 0
Jacobi 5 5 0
JanneComplex 4 2 0
MatMult 6 6 0
MatrixInversion 8 7 1
Sieve 4 3 0
201 compress 17 3 1

JavaLayer 117 67 5
Linpack 24 8 1
SciMark 43 9 0
Whetstone 7 7 0

The presence of loops with a noncontinuous set of possible iterations shows that our algo-
rithm is able to handle complex cyclic structures keeping track of all the possible execution

74 CHAPTER 5. EVALUATION

scenarios (and not only the best and worst case).

5.8 Annotations

The number of manual annotations that were needed to bound the number of iterations for
each basic block are shown in the third column of Table 5.7. Small tests (i.e., small scientific
kernels) do not normally require annotations while some bigger applications as JavaLayer need
some manual intervention.

Table 5.7: Manual annotations.

Program Loops Annotations
BubbleSort 4 0
Division 2 0
ExpInt 3 0
Jacobi 5 0
JanneComplex 4 2
MatMult 6 0
MatrixInversion 11 0
Sieve 4 1
201 compress 17 10

JavaLayer 117 46
Linpack 24 19
SciMark 43 33
Whetstone 14 0

The main reason is that these applications where not designed considering timing concerns.
In the case of JavaLayer, 15 annotations where needed to specify that the number of sub-bands
is a constant and known number. Many other loops, in the JavaLayer benchmark, have a con-
stant number of iterations which was expressed in an object field (see Table 2.2), hindering the
automatic analysis.

5.9 Automatic inlining

Automatic inlining is performed when one or more loops depend on method parameters and
the code of the method is inlined to analyze it in the caller context (see Section 2.8.2). The
advantage of this operation is that, in many cases, the analyzer is able to find the correct loop
iteration bounds in the caller context (see Table 5.8).

5.10 Memory allocation

Once all the basic blocks in the analyzed program have a bound on the maximum number
of iterations, in addition to the computation of the WCET, it is also possible to estimate the
maximum allocated memory (assuming no garbage collection).

5.10. MEMORY ALLOCATION 75

Table 5.8: Method inlining.

Program Annotations Inlined methods
201 compress 10 5

JavaLayer 46 1
Linpack 19 7
SciMark 33 6
Whetstone 0 0

This is useful for real-time applications using immortal objects (see Section 4.1.2) where,
before scheduling, the system must be able to ensure that it will have enough free memory for
the process.

The maximum amount of allocated memory can be computed by a complete traversal of
the call and control-flow graphs without iterating over loops and recursive procedures since
their maximum number of iterations is already computed by the semantic WCET analyzer (see
Chapter 2).

During the traversal the analyzer computes the maximum sum of all the objects allocated on
the heap and the maximum size of the stack. Our tool supports a prototypical implementation
of a wort-case memory allocation analyzer which does not consider false paths and uses a
simplified model of the memory management but nevertheless Table 5.4 shows some results for
a small set of benchmarks (the prototype is not able to handle all the benchmarks).

Table 5.9: Memory allocation estimation.

Measured Estimated OverestimationBenchmark [KB] [KB] [KB]
Drystone 62 567 62 634 0.1%
Linpack 16 057 16 057 0%
Whetstone 0.822 0.822 14%

Although the analysis of the maximum amount of allocated memory and the analysis of
the worst-case execution time are similar on the semantic level (they both rely on the maximum
number of basic block executions) they differ on the backend: runtime environment for memory
and processor and system for the instruction duration estimation.

The computation of the space requirements for a given object (with a known type) is solely
depending on the runtime environment and, in contrast to the instruction duration, is context
independent

Our prototype makes some basic assumption about memory management from runtime sys-
tem but a more in-depth analysis of GCJ’s memory allocation scheme (see Section 4.2.1) would
be required for the analysis of more complex examples.

76 CHAPTER 5. EVALUATION

5.11 Resources

Table 5.10 shows the time needed to compile the given benchmarks: Size LOC show the size
of the benchmark in lines of code, Compile represents the total time needed to compile the
application, Semantic represents the part of the total compilation time spent in the semantic
analyzer module and HW shows the time needed by the hardware-level analyzer to estimate the
WCET.

Table 5.10: WCET Analyzer resources.

Compile Semantic HWProgram Size (LOC) [s] [s] [s]
201 compress 574 12 3 6

JavaLayer 5 816 302 10 661
Linpack 318 17 8 12
SciMark 756 11 1 6
Whetstone 128 9 1 5

Both the overhead of the semantic analyzer on the whole compilation time and the time
needed by the hardware-level analyzer (which includes scanning and parsing of the assembler
files) remain small and manageable even for large tests.

5.12 Discussion

Our WCET estimator is able to deliver sound results for a number of small and medium-sized
Java applications thanks to a precise semantic analysis and a quick context-sensitive hardware-
level analysis to estimate the duration of the program’s instructions.

The partial abstract interpretation pass is able to discover several false paths but more sig-
nificantly is able to help in the computation of the bounds on the number of loop iterations. The
integration of precise semantic structural information in the bounding process of the number of
possible iterations for each basic block allows to consider different execution frequencies for
distinct paths inside loop bodies.

The hardware-level analysis based on the principle of locality is able to estimate the duration
of each instruction determining the effects of caches and pipelines in the right computational
context.

6
Conclusions

The computation of the worst-case execution time of an application is crucial for real-time sys-
tems (where the WCET is needed for schedulability analysis) and a useful tool for the analysis
of many soft-real-time and multimedia systems.

Although the problem of finding the WCET of a program is, in the general case, undecid-
able, its importance motivated the growth of several pragmatic approaches to compute tight
estimations of the WCET for a limited set of analyzed applications. A considerable amount of
related research exits in both the field of semantic analysis and low-level hardware analysis (see
Chapter 1) offering solutions to several practical application domains.

These techniques differ on several aspects: Some approaches compute a precise and con-
servative WCET for simple and deterministic systems, while other allow some approximations
(e.g., in the instruction duration estimation) to be able to handle larger inputs.

This thesis presents a set of analyses that do not rely on path enumeration to estimate the
WCET for fairly large Java applications that do not include explicit timing specifications.

6.1 Summary and contributions

This thesis addresses both the challenges in the semantic and hardware-level analyses and makes
the following contributions:

Semantic analysis. The dissertation presents a set of analyses to derive safe bounds on the
maximum number of iteration for each semantic construct in the analyzed program.

• We define a fast partial abstract interpretation pass able to significantly reduce the possible
values of local variables at given program points. This pass able to discover some false
paths. The abstract interpretation is limited to code segments that do not include cycles,
as a result the complexity of is linear.
The produced sets of possible values for each local variable are used to increase the
precision of the loop bounder and to allow the user to easily manually specify bounds
on the values of loop induction variables (see Section 2.7).

• We developed a loop iterations bounding technique that takes into account different path
frequencies inside a loop body, without the need to perform path enumeration.
The analysis, which operates on the loops in isolation and is tightly integrated in the high-
level compiler structures, cooperate with classical compiler analyses both by using their

77

78 CHAPTER 6. CONCLUSIONS

results and by providing useful information on the loops behavior (one simple example is
the detection of dead or infinite loops).

• We analyze unmodified Java programs without posing restrictions to the semantics of
the code (programs using recursion are allowed but have to manually annotated with
the maximum recursion depth) and we reduce the size of the call graph by resolving
polymorphism at call sites by a sophisticated whole-program variable type based analysis
(see Section 2.8).

Instruction duration analysis. In this thesis we describe a technique to approximate the du-
ration of the various assembler instructions in their execution context. The approach can be
adapted to different architectures with a configurable precision: the level of approximation
which is dependent on the length of the simulated partial traces (see Section 3.4) can be spec-
ified by the user. The technique can be used with any cycle-precise CPU simulator allowing a
high portability.

The simulation of short program traces before and after a given instruction has shown to be a
fast and effective solution to analyze the duration of the instructions in their possible execution
contexts. The whole analysis in performed in asymptotically linear time over the number of
instructions that are present in the program source (approaches that are based on simulation or
abstract interpretation depend on the other hand from the number of executed instructions).

Language and platform. Although our implementation is Java (frontend) and Intel (backend)
specific, the solution can be applied to a plethora of languages and platforms.

• The loop bounding algorithm and the partial interpretation pass are language independent
and work directly on the SSA form of the compiler intermediate representation. The
precision of the analysis is however strongly influenced by the chosen language: the
presence of pointer arithmetic (as in C or C++) could, because of aliasing problems,
strongly reduce the amount of successfully bounded loops.

• The partial trace evaluation technique is architecture independent. The quality of the re-
sults depends on the faithfulness of the simulator model to the actual hardware implemen-
tation, and on the predictability of the CPU. The effects of preemption on a nonpipelined
processor without caches are inherently smaller than the same effects on a modern CPU
as the PowerPC or the Pentium.

6.2 Future work and open issues

There are three major directions for future research based on our WCET estimator: On the
semantic analysis level to tighten the number of iterations on the cyclic structures, on the
hardware-level analysis to better model the hardware architecture and finally on the analysis
of other restricted resources (e.g., memory allocation).

Semantic analysis. Although our semantic analyzer is able to bound the iterations of a large
number of loops several improvements are possible. We do not consider dependences among

6.3. CONCLUDING REMARKS 79

loops and we are not able to consider loop bounds depending on the value of an outer loop’s
induction variable (e.g., triangular loops). This limitation is one of the major causes behind
the WCET overestimation of many scientific applications where these loops are common (the
WCET is overestimated since we conservatively consider triangular inner loops as rectangular).

A parametrization of the data structures (e.g., the intervals holding the number of iterations)
could allow the analyzer to keep track of the execution of a loop with dynamic bounds depend-
ing on an outer loop. Parametrization can also be broadly applied to a whole set of problems as
loops depending on the methods parameters, or on a program’s input [101].

Automatic recursion depth bounding is another issue that needs attention and further re-
search. The manual specification of the bounds can be a difficult and tedious task: it requires a
precise knowledge of the theoretical limits of the analyzed algorithms and it’s implementation
(recursion could involve a large set of methods). Users could benefit from an automatic analy-
sis by reducing the number of manual annotations and therefore by reducing the possibility of
misleading user interventions.

Hardware model. Our implementation makes use of a simplified processor model for the
cycle-precise CPU simulator, and a more accurate simulation would certainly increase the pre-
cision of the results. The main source of imprecision however is not coming from the incorrect
modeling of the processor but from the impossibility to track data references and therefore to
properly estimate the influence of data caches on memory operations.

The whole predictor would benefit from the substitution of the probabilistic cache model
used by our predictor (see Section 3.4.2) by a context sensitive data reference analysis able to
compute or approximate the state of the data caches.

Maximum allocated memory. The most usual and obvious use of the information on the se-
mantics of the program computed by the WCET estimator is the estimation of the longest run-
ning time of the application. Memory is, as time, another limited resource and future research
to automatically estimate the maximum amount of allocated memory of processes would be
beneficial to the stability of the real-time systems (see Section 5.10).

6.3 Concluding remarks

Many pragmatic solutions to the worst-case execution time estimation have been presented ad-
dressing different aspects: from precise estimation of small hard-real-time application running
on predictable platform to the estimation for big applications using probabilistic methods.

This thesis describes a complete set of analyses addressing both the semantic aspects as
well as the analysis on a given hardware platform, with the goal to deliver an approximation
of the WCET of fairly large soft-real time applications on a modern architecture sufficient for
practical purposes.

Our work shows that it is possible to approximate the WCET of soft-real-time applications
written with object-oriented languages (Java in our case) on modern platforms without per-
forming path enumeration. The complete analysis time is dependent solely on the number of
instructions or blocks present in the code and not as in the case of simulation on the number of
executed instructions.

Bibliography

[1] Requirements for real-time extensions for the JavaTM platform, April 1999. NIST Special
Pubblication, U.S. Department of Commerce, Lisa Carnahan, NIST and Markus Ruark,
Commotion Technology, Inc. Editors.

[2] P. Altenbernd. On the false path problem in hard real-time programs. In Proc. 8th
Euromicro Workshop on Real-Time Systems, pages 102–107, L’Aquila, Italy, June 1996.

[3] D. F. Bacon and P. F. Sweeney. Fast static analysis of C++ virtual function calls. In
Proc. 11th Conf. on Object-Oriented Programming Systems, Languages, and Applica-
tions, pages 324–341, San Jose, CA, October 1996. ACM.

[4] G. Bernat, A. Burns, and A. Wellings. Portable worst-case execution time analysis using
Java byte-code. In Proc. 12th Euromicro Workshop on Real-Time Systems, Stockholm,
Sweden, June 2000.

[5] G. Bernat, A. Colin, and S. Petters. WCET analysis of probabilistic hard real-time sys-
tems. In Proc. 23rd IEEE Intl. Real-Time Systems Symp., pages 279–289, Austin, TX,
December 2002. IEEE.

[6] G. Berry and G. Gonthier. The Esterel synchronous programming language: Design, se-
mantics, implementation. Science of Computer Programming, 19(2):87–152, November
1992.

[7] D. Bhandarkar and J. Ding. Performance characterization of the Pentium Pro processor.
In Proc. 3rd Intl. Symp. on High-Performance Computer Architecture, pages 288–297,
San Antonio, TX, February 1997.

[8] D. Blaauw, R. Panda, and A. Das. Removing user specified false paths from timing
graphs. In Proc. 37th Conf. on Design Automation, pages 270–273, Las Vegas, NV, June
2000. IEEE.

[9] J. Blieberger. Real-time properties of indirect recursive procedures. Information and
Computation, 171(2):156–182, 2001.

[10] J. Blieberger and R. Lieger. Real-time recursive procedures. In Proceedings of the 7th
Euromicro Workshop on Real-Time Systems, pages 229–235, Odense, Denmark, June
1995.

[11] G. Bollella, B. Brosgol, P. Dibble, S. Furr, J. Gosling, D. Hardin, M. Turnbull, and
R. Belliardi. The Real-Time Specification for Java. Addison-Wesley, June 2000.

81

82 BIBLIOGRAPHY

[12] G. Bollella and J. Gosling. The real-time specification for Java. Computer, 33(6):47–54,
June 2000.

[13] H. Börjesson. Incorporating worst-case execution time in a commercial C-compiler.
Technical Report 69, Department of Computer Systems, Uppsala University, Uppsala,
Sweden, January 1996.

[14] R. Brega. A real-time operating system designed for predictability and run-time safety.
In Proc. 4th Intl. Conf. Motion and Vibration Control (MOVIC), pages 379–384, Zurich,
Switzerland, August 1998.

[15] R. Brega. A Combination of System Software Techniques Aimed at Raising the Run-
Time Safety of Complex Mechatronic Applications. PhD thesis, Swiss Federal Institute
of Technology (ETH) Zurich, 2002. Nr. 14513.

[16] J. Busquets-Mataix and A. Wellings. Adding instruction cache effect to schedulability
analysis of preemptive real-time systems. In Proc. 8th Euromicro Workshop on Real-
Time Systems, pages 271–276, L’Aquila, Italy, June 1996.

[17] G. Buttazzo. Hard Real-Time Computing Systems, Predictable Scheduling Algorithms
and Applications, volume 416 of The Kluwer International Series in Engineering and
Computer Science. Kluwer Academic Publishers, Boston, MA, September 1997.

[18] M. Campoy, A. Ivars, and J. Busquets-Mataix. Static use of locking caches in multi-
task preemptive real-time systems. In Proc. IEEE/IEE Real-Time Embedded Systems
Workshop, London, UK, December 2001.

[19] C. Cifuentes. Reverse Compilation Techniques. PhD thesis, Queensland Univ. of Tech-
nology, School of Computing Science, Brisbane, Australia, July 1994.

[20] A. Colin and I. Puaut. Worst-case execution time analysis for a processor with branch
prediction. Real-Time Systems, 18(2–3):249–274, May 2000.

[21] M. Corti, R. Brega, and T. Gross. Approximation of worst-case execution time for pre-
emptive multitasking systems. In Proc. ACM SIGPLAN Workshop on Languages, Com-
pilers, and Tools for Embedded Systems, Vancouver, Canada, June 2000.

[22] M. Corti and T. Gross. Instruction duration estimation by partial trace evaluation. In
Proc. WIP Session 10th Real-Time and Embedded Technology and Applications Symp.,
Toronto, Canada, May 2004. IEEE.

[23] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static anal-
ysis of programs by construction or approximation of fixpoints. In Conference Record of
the Fourth Annual ACM SIGPLAN-SIGACT Symp. on Principles of Programming Lan-
guages, pages 238–252, Los Angeles, CA, 1977. ACM Press.

[24] H. Curnow and B. Wichmann. A synthetic benchmark. Computer Journal, 19(1):43–49,
February 1976.

[25] R. Cytron et al. Efficiently computing static single assignment form and the control
dependence graph. ACM Trans. on Programming Languages and Systems, 13(4):451–
490, October 1991.

BIBLIOGRAPHY 83

[26] J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented programs using
static class hierarchy analysis. In Proc. 9th European Conf. on Object-Oriented Pro-
gramming, pages 77–101, Årtus, Denmark, August 1995.

[27] J. Dean, J. Hicks, C. Waldspurger, W. Weihl, and G. Chrysos. ProfileMe: Hardware sup-
port for instruction-level profiling on out-of-order processors. In Proc. 30th Intl. Symp.
on Microarchitecture, pages 292–302, Los Alamitos, CA, December 1997. IEEE/ACM.

[28] Z. Deng and J. W. S. Liu. Scheduling real-time applications in open environment. In
Proc. 18th Real-Time Systems Symp., pages 308–319, San Francisco, CA, December
1997. IEEE.

[29] J. Dongarra. Performance of various computers using standard linear equations software
in a Fortran environment. In Walter J. Karplus, editor, Proc. 3rd Conf. on Multiprocessors
and Array Processors, pages 15–32, San Diego, CA, January 1987. Society for Computer
Simulation.

[30] P. Emma. Understanding some simple processor-performance limits. IBM Journ. Re-
search and Development, 43(3):215–231, 1997.

[31] C. Ferdinand et al. Reliable and precise WCET determination for a real-life processor.
In Proc. 1st Intl. Workshop on Embedded Software, pages 469–485, Tahoe City, CA,
October 2001. ACM.

[32] M. F. Fernandez. Simple and effective link-time optimization of Modula-3 programs. In
Proc. 8th Conf. on Programming Language Design and Implementation, pages 103–115,
La Jolla, CA, June 1995. ACM.

[33] Free Software Foundation. GCJ: The GNU compiler for the Java programming language.
http://gcc.gnu.org/java/.

[34] Free Software Foundation. GNU Classpath. http://www.gnu.org/software/classpath/.

[35] M. R. Garey and D. S. Johnson. Complexity results for multiprocessor scheduling under
resource constraints. SIAM Journal of Computing, 4(4):397–411, 1975.

[36] N. Gehani and K. Ramamritham. Real-time concurrent C (C++): A language for pro-
gramming dynamic real-time systems. Real-Time Systems, 3(4):377–405, December
1991.

[37] R. Govindan and D. P. Anderson. Scheduling and IPC mechanisms for continuous media.
In Proc. 13th Symp. on Operating Systems Principles, pages 68–80, Pacific Grove, CA,
October 1991. ACM.

[38] Real-Time Java Working Group. Real-time core extensions for the Java platform.
http://www.j-consortium.org/, September 2000.

[39] J. Gustafsson. Calculation of execution times in realtimetalk-an object-oriented language
for real-time. In Proc. 1st Workshop on Object-Oriented Real-Time Dependable Systems,
pages 153–162, Dana Point, CA, October 1994. IEEE.

http://gcc.gnu.org/java/
http://www.gnu.org/software/classpath/
http://www.j-consortium.org/

84 BIBLIOGRAPHY

[40] J. Gustafsson. Analyzing Execution-Time of Object-Oriented Programs Using Abstract
Interpretation. PhD thesis, Department of Computer Systems, Information Technology,
Uppsala Univ., 2000.

[41] C. Healy, R. Arnold, F. Mueller, D. Whalley, and M. Harmon. Bounding pipeline and
instruction cache performance. IEEE Trans. on Computers, 48(1):53–70, January 1999.

[42] C. Healy, M. Sjödin, V. Rustagi, and D. Whalley. Bounding loop iterations for tim-
ing analysis. In Proc. 4th Real-Time Technology and Applications Symp., pages 12–21,
Denver, CO, June 1998.

[43] C. Healy, R. van Engelen, and D. Whalley. A general approach for tight timing predic-
tions on non-rectangular loops. In WIP Proc. 5th Real-Time Technology and Applications
Symp., pages 11–14, Vancouver, Canada, June 1999. IEEE.

[44] C. Healy and D. Whalley. Tighter timing predictions by automatic detection and exploita-
tion of value-dependent constraints. In Proc. 5th Real-Time Technology and Applications
Symp., pages 79–88, Vancouver, Canada, June 1999.

[45] M. T. Higuera-Toledano and V. Issarny. Java embedded real-time systems: An overview
of existing solutions. In Proc. 3rd IEEE Intl. Symp. on Object-Oriented Real-Time Dis-
tributed Computing, pages 392–399, Newport, CA, March 2000.

[46] M. Honegger, R. Brega, and G. Schweitzer. Application of a nonlinear adaptive controller
to a 6 dof parallel manipulator. In Proc. Intl. Conf. Robotics and Automation, pages
1930–1935, San Francisco CA, April 2000. IEEE.

[47] M. Honegger, G. Schweitzer, O. Tschumi, and F. Amberg. Vision supported operation
of a concrete spraying robot for tunneling work. In Proc. 4th Conference on Mechatron-
ics and Machine Vision in Practice, pages 230–234, Toowoomba, Australia, September
1997.

[48] M. Humphrey and J. A. Stankovic. Predictable threads for dynamic, hard real-time en-
vironments. IEEE Trans. on Parallel and Distributed Systems, 10(3):281–296, March
1999.

[49] IBM Microelectronic Division and Motorola Inc. PowerPC 604/604e RISC Micropro-
cessor User’s Manual, 1998.

[50] Intel Corporation. Intel Architecture Optimization, Reference Manual, 1999.

[51] JavaZOOM. Javalayer. http://www.javazoom.net/javalayer/javalayer.html.

[52] K. Jeffay. Scheduling sporadic tasks with shared resources in hard-real-time systems. In
Proc. 17th Real-Time Systems Symp., pages 89–99, Phoenix, AZ, December 1992. IEEE.

[53] S.-K. Kim, S. Min, and R. Ha. Efficient worst-case timing analysis of data caching. In
Proc. 2nd Real-Time Technology and Applications Symp., pages 230–240, Boston, MA,
June 1996. IEEE.

http://www.javazoom.net/javalayer/javalayer.html

BIBLIOGRAPHY 85

[54] D. Kirk. SMART (Strategic Memory Allocation for Real-Time) cache design. In Proc.
10th Real-Time Systems Symp., pages 229–239, Santa Monica, CA, December 1989.
IEEE.

[55] E. Kligerman and A. Stoyenko. Real-time Euclid: A language for reliable real-time
systems. IEEE Trans. on Software Eng., 12(9):941–949, September 1986.

[56] C.-G. Lee et al. Bounding cache-related preemption delay for real-time systems. IEEE
Trans. on Software Eng., 27(9):805–826, September 2001.

[57] C.-G. Lee, J. Hahn, Y.-M. Seo, S. Min, R. Ha, S. Hong, C. Park, M. Lee, and C. Kim.
Analysis of cache-related preemption delay in fixed-priority preemptive scheduling. In
Proc. 17th Real-Time Systems Symp., pages 264–274, Washington, D.C., December
1996. IEEE.

[58] J. Leung and J. Whitehead. On the complexity of fixed-priority scheduling of periodic
real-time tasks. Performance Evaluation, 2(4):237–250, December 1982.

[59] F. Levine and C. Roth. A programmer’s view of performance monitoring in the PowerPC
microprocessor. IBM Journ. Research and Development, 41(3):345–356, May 1997.

[60] Y.-T. Li, S. Malik, and A. Wolfe. Cache modeling for real-time software: Beyond di-
rected mapped instructions caches. In Proc. 17th Real-Time Systems Symp., pages 254–
263, Washington, D.C., December 1996. IEEE.

[61] J. Liedtke, H. Härtig, and M. Hohmuth. OS-controlled cache predictability for real-time
systems. In Proc. 3rd Real-Time Technology and Applications Symp., Montreal, Canada,
June 1997. IEEE.

[62] S.-S. Lim, Y. Bae, G. Jang, B.-D. Rhee, S. Min, C. Park, H. Shin, K. Park, S.-M. Moon,
and C.-S. Kim. An accurate worst-case timing analysis for RISC processors. IEEE Trans.
on Software Eng., 21(7):593–604, July 1995.

[63] S.-S. Lim, J. Han, J. Kim, and S. Min. A worst-case timing analysis technique for
multiple-issue machines. In Proc. 19th Real-Time Systems Symp., pages 334–345,
Madrid, Spain, December 1998. IEEE.

[64] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-
real-time environment. Journal of the ACM, 20(1):46–61, January 1973.

[65] T. Lundqvist. A WCET Analysis Method for Pipelined Microprocessors with Cache Mem-
ories. PhD thesis, Chalmers Univ. of Technology, Göteborg, Sweden, June 2000.

[66] T. Lundqvist and P. Stenström. An integrated path and timing analysis method based on
cycle-level symbolic execution. Real-Time Systems, 17(2/3):183–207, November 1999.

[67] T. Lundqvist and P Stenström. Timing anomalies in dynamically scheduled micropro-
cessors. In Proc. 20th Real-Time Systems Symp., pages 12–21, Phoenix, AZ, December
1999. IEEE.

86 BIBLIOGRAPHY

[68] J. Miecznikowski and L. Hendren. Decompiling Java using staged encapsulation. In
Proc. Working Conf. on Reverse Engineering, pages 368–374, Stuttgart, Germany, Octo-
ber 2001. IEEE.

[69] T. Mitra and A. Roychoudhury. A framework to model branch prediction for worst case
execution time analysis. In Proc. 2nd Intl. Workshop on Worst-Case Execution Time
Analysis, Vienna, Austria, June 2002.

[70] A. Mok. Evaluating tight execution time bounds of programs by annotations. In Proc.
6th Workshop on Real-Time Operating Systems and Software, pages 74–80. IEEE, May
1989.

[71] H. Mössenböck and N. Wirth. The programming language Oberon-2. Structured Pro-
gramming, 12(4):179–195, 1991.

[72] S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann Pub-
lishers, 1997.

[73] F. Müller and J. Wegener. A comparison of static analysis and evolutionary testing for the
verification of timing constraints. In Proc. 19th Real Time Technology and Applications
Symp., pages 179–188, Madrid, Spain, June 1998. IEEE.

[74] H. S. Negi, T. Mitra, and A. Roychoudhury. Accurate estimation of cache-related pre-
emption delay. In Proc. 1st IEEE/ACM/IFIP Intl. Conference on Hardware/Software
Codesign and System Synthesis, pages 201–206, Newport Beach, CA, October 2003.

[75] D. Niehaus. Program representation and translation for predictable real-time systems. In
Proc. 12th Real-Time Systems Symp., pages 53–63, San Antonio, TX, December 1991.
IEEE.

[76] K. Nilsen. Adding real-time capabilities to Java. Comm. ACM, 41(6), June 1998.

[77] S. Oikawa and H. Tokuda. User-level real-time threads. In Proc. 11th Workshop on
Real-Time Operating Systems and Software, pages 7–11, Seattle, WA, May 1994.

[78] C. Park. Predicting program execution times by analyzing static and dynamic program
paths. Real-Time Systems, 1(5):31–62, 1993.

[79] G. Pospischil, P. Puschner, A. Vrchoticky, and R. Zainlinger. Developing real-time tasks
with predictable timing. IEEE Software, 9(5):35–44, September 1992.

[80] B. Pozo, R. Miller. Scimark2. http://math.nist.gov/scimark2.

[81] I. Puaut and D. Decotigny. Low-complexity algorithms for static cache locking in multi-
tasking hard real-time systems. In Proc. 23rd IEEE Intl. Real-Time Systems Symp., pages
114–123, Austin, TX, December 2002. IEEE.

[82] P. Puschner and C. Koza. Calculating the maximum execution time of real-time pro-
grams. Journ. Real-Time Systems, 1(2):160–176, September 1989.

[83] P. Puschner and R. Nossal. Testing the results of static worst-case execution-time analy-
sis. In Proc. 19th Real-Time Systems Symp., pages 134–143, Madrid, Spain, December
1998. IEEE.

http://math.nist.gov/scimark2

BIBLIOGRAPHY 87

[84] P. Puschner and A. Schedl. Computing maximum task execution times — A graph-based
approach. Real-Time Systems, 13(1):67–91, July 1997.

[85] P. Puschner and A. Vrchoticky. Problems in static worst-case execution time analysis. In
9. ITG/GI-Fachtagung Messung, Modellierung und Bewertung von Rechen- und Kommu-
nikationssystemen, Kurzbeiträge und Toolbeschreibungen, pages 18–25, Freiberg, Ger-
many, September 1997.

[86] C. Roth, F. Levine, and E. Welbon. Performance monitoring on the PowerPC 604 micro-
processor. In Intl. Conf. on Computer Design: VLSI in Computers and Processors, pages
202–218, Austin, TX, October 1995.

[87] Li Y.-T. S. and S. Malik. Performance analysis of embedded software using implicit path
enumeration. In Proc. ACM SIGPLAN Workshop on Languages, Compilers, and Tools
for Embedded Systems, pages 88–98, La Jolla, CA, June 1995.

[88] K. Safford. A framework for using the Pentium’s performance monitoring hardware.
Master’s thesis, University of Illinois, Urbana, IL, 1997.

[89] Y. Seo, J. Park, and S. Hong. Supporting preemptive user-level threads for embedded
real-time systems. Technical report, Seoul National University, Seoul, Korea, August
1998. SNU-EE-TR-98-1.

[90] O. Serlin. Scheduling of time critical processes. In Proc. Spring Joint Computer Conf.,
pages 925–932, Atlantic City, NJ, May 1972.

[91] M. Sharir. Structural analysis: a new approach to flow analysis in optimizing compilers.
Computer Languages, 5(3-4):141–153, 1980.

[92] A. C. Shaw. Reasoning about time in higher-level language software. IEEE Trans. on
Software Eng., 15(7):875–889, January 1989.

[93] F. Stappert. WCET benchmarks. http://www.c-lab.de/home/en/download.html.

[94] J. Staschulat and Ernst R. Multiple process execution in cache related preemption delay
analysis. In Proc. 4th ACM Intl. Conf. on Embedded Software, pages 278–286, Pisa,
Italy, September 2004.

[95] A. D. Stoyenko, V. C. Hamacher, and R. C. Holt. Analyzing hard-real-time programs for
guaranteed schedulability. IEEE Trans. on Software Eng., 17(8):737–750, August 1991.

[96] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam, E. Gagnon, and
C. Godin. Practical virtual method call resolution for Java. In Proc. 15th Conf. on
Object-Oriented Programming, Systems, Languages, and Applications, pages 264–280,
Minneapolis, MN, October 2000. ACM.

[97] The Standard Performance Evaluation Corporation. SPEC JVM98 Benchmarks.
http://www.spec.org/osg/jvm98, 1996.

[98] H. Theiling and C. Ferdinand. Combining abstract interpretation and ILP for microar-
chitecture modelling and program path analysis. In Proc. 19th Real-Time Systems Symp.,
pages 144–153, Madrid, Spain, December 1998. IEEE.

http://www.c-lab.de/home/en/download.html
http://www.spec.org/osg/jvm98

88 BIBLIOGRAPHY

[99] R. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units. IBM Jour-
nal, 11(1):25–33, January 1967.

[100] H. Tomiyama and N. D. Dutt. Program path analysis to bound cache-related preemption
delay in preemptive real-time systems. In Proc. 8th Intl. Workshop on Hardware/Software
Co-Design, pages 67–71, San Diego, CA, May 2000.

[101] E. Vivancos, C. Healy, F. Mueller, and D. Whalley. Parametric timing analysis. SIGPLAN
Not., 36(8):88–93, 2001.

[102] C. von Praun. Detecting Synchronization Defects in Multi-Threaded Object-Oriented
Programs. PhD thesis, Swiss Federal Institute of Technology (ETH) Zurich, Zurich,
Switzerland, May 2004. Nr. 15524.

[103] A. Vrchoticky. Compilation support for fine-grained execution time analysis. In Proc.
ACM SIGPLAN Workshop on Languages, Compilers, and Tools for Embedded Systems,
Orlando, FL, 1994.

[104] T. Welch. A technique for high performance data compression. IEEE Computer, 17(6):8–
19, June 1984.

[105] N. Wirth. From Modula to Oberon. Software Practice and Experience, 18(7):671–690,
July 1988.

[106] S.H. Yen, D.H. Du, and S. Ghanta. Efficient algorithms for extracting the K most critical
paths in timing analysis. In ACM Press, editor, Proc. 26th Conf. on Design Automation,
pages 649–654, Las Vegas, NV, June 1989. IEEE/ACM.

[107] N. Zhang, A. Burns, and M. Nicholson. Pipelined processors and worst-case execution
times. Real-Time Systems, 5(4):319–343, October 1993.

List of Figures

2.1 Structural patterns. 11
2.2 Loop transformations. 11
2.3 Pattern selection. 12
2.4 Structural regions for a simple Java program. 13
2.5 Loop with more than a back-edge. 14
2.6 Region that cannot be represented by a predefined pattern. 14
2.7 Algorithm to detect proper regions. 15
2.8 Snapshot of the proper region detection algorithm. 15
2.9 Example of a program with false paths. 20
2.10 Finding iteration branches. 22
2.11 Additional iteration branches. 22
2.12 Different adjustments for the computation of N of two sample loops. 24
2.13 Exit value of ranges. 26
2.14 Triangular loops. 27
2.15 An example of a loop. 28
2.16 Examples of block iterations. 29
2.17 Biggest cyclic regions. 31
2.18 Computation of iter(b). 32
2.19 Example Java program. 33
2.20 Control-flow graph. 34
2.21 Precedence graphs with iteration ranges. 35
2.22 Precedence graphs with exit values. 36
2.23 Precedence graphs iteration counts. 37
2.24 Basic block bounds. 38
2.25 User inserted guards. 39
2.26 Manual annotations. 39
2.27 Method inlining. 40

3.1 Partial trace and principle of locality. 53

89

90 LIST OF FIGURES

3.2 Trace extensions. 53
3.3 Partial traces. 54
3.4 Simplified CPU model. 55
3.5 Virtual loop unrolling. 58
3.6 Finding the longest non-false path. 59

5.1 Influence of the partial trace length on the results. 72

List of Tables

2.1 Size of the abstract domain representation. 16
2.2 Loop control variable types. 17

3.1 WCET for some sample XO/2 applications. 50

5.1 Infeasible paths. 69
5.2 Partial abstract interpretation results used for loop bounding. 70
5.3 WCET estimations of small kernels. 71
5.4 WCET estimations. 71
5.5 Effects of semantic analysis. 73
5.6 Loop header iterations representation. 73
5.7 Manual annotations. 74
5.8 Method inlining. 75
5.9 Memory allocation estimation. 75
5.10 WCET Analyzer resources. 76

91

Curriculum Vitae

Matteo Corti

September 12, 1974 Born in Lugano, Switzerland

1980 – 1985 Primary school, Breganzona

1985 – 1989 Secondary school, Breganzona

1989 – 1993 Liceo scientifico (High School), Lugano

1993 Maturità tipo C

1993 – 1997 Studies in Computer Science, ETH Zurich

1998 Internship at FIDES/EDS, Zurich

1998 Diploma in Computer Science, ETH Zurich

1998 – 2005 Research and Teaching Assistant
Laboratory for Software Technology, ETH Zurich

93

	Abstract
	Riassunto
	Acknowledgments
	Contents
	1 Introduction
	1.1 Worst-case execution time
	1.2 Semantic analysis
	1.2.1 Goals
	1.2.2 Manual annotations and special purpose languages
	1.2.3 Abstract interpretation
	1.2.4 Data-flow analysis

	1.3 Hardware analysis
	1.4 Thesis statement
	1.5 Road-map for this dissertation

	2 Semantic Analysis
	2.1 Structural analysis
	2.2 Loop bounding
	2.3 Partial abstract interpretation
	2.3.1 Partial linear paths
	2.3.2 Representation of the abstract domain
	2.3.3 Safe approximations of the abstract domain representation
	2.3.4 Abstract interpretation
	2.3.5 False paths
	2.3.6 Variable ranges

	2.4 Loop header bounding
	2.4.1 Precedence graph
	2.4.2 Iteration branches
	2.4.3 Reachability of iteration branches
	2.4.4 Loop header iterations
	2.4.5 Nested loops

	2.5 Improving the precision of the loop bounder
	2.5.1 Execution counts for iteration branches
	2.5.2 Execution counts for basic blocks
	2.5.3 Complexity

	2.6 Example
	2.7 Manual annotations
	2.8 Method calls and object orientation
	2.8.1 Call graph reduction
	2.8.2 Method specialization and inlining
	2.8.3 Recursion

	2.9 Discussion

	3 Hardware-Level Analysis
	3.1 Related work
	3.1.1 Caches and pipelines
	3.1.2 Branch prediction

	3.2 Statistical approaches
	3.2.1 XO/2 WCET estimator

	3.3 The road to partial trace simulation
	3.4 Partial trace emulation
	3.4.1 Locality
	3.4.2 Partial trace simulation
	3.4.3 Longest path
	3.4.4 Complexity

	3.5 Summary

	4 Implementation
	4.1 The Java language
	4.1.1 Scheduling and event handling
	4.1.2 Memory management
	4.1.3 Our approach
	4.1.4 Multi-threading

	4.2 The compiler
	4.2.1 Memory management

	4.3 Hardware-level measurements
	4.3.1 On-chip performance monitoring units
	4.3.2 XO/2 measurements
	4.3.3 Linux measurements on Intel Pentium processors
	4.3.4 Discussion

	5 Evaluation
	5.1 Testing environment
	5.1.1 Platform

	5.2 Benchmarks
	5.2.1 Small synthetic kernels
	5.2.2 Application benchmarks

	5.3 Partial abstract interpretation
	5.4 Small synthetic kernels
	5.5 Application benchmarks
	5.5.1 Tuning and evaluation of the partial traces length

	5.6 Effects of semantic analysis
	5.7 Representation of ranges of iterations
	5.8 Annotations
	5.9 Automatic inlining
	5.10 Memory allocation
	5.11 Resources
	5.12 Discussion

	6 Conclusions
	6.1 Summary and contributions
	6.2 Future work and open issues
	6.3 Concluding remarks

	Bibliography
	List of Figures
	List of Tables

