
Approximating the Worst-CaseApproximating the Worst-Case
Execution Time of Soft Real-timeExecution Time of Soft Real-time

ApplicationsApplications

Matteo Corti

Matteo Corti, 2005-03-03 2

GoalGoal
WCET analysis:
• estimation of the longest possible running

time

Soft real-time systems:
• allow some approximations
• large applications

Matteo Corti, 2005-03-03 3

ThesisThesis
• It is possible to perform the WCET

estimation without relying on path
enumeration:
– bound the iterations of cyclic structures
– find infeasible paths
– analyze the call graph of object-oriented

languages
– estimate the instruction duration on modern

architectures

Matteo Corti, 2005-03-03 4

ChallengesChallenges
Semantic:
• bounds on the iterations of cyclic control-

flow structures
• infeasible paths

Hardware-level:
• instruction duration
• modern architectures (caches, pipelines,

branch prediction)

Matteo Corti, 2005-03-03 5

OutlineOutline
• Goal and thesis
• Semantic analysis
• Hardware-level analysis
• Environment
• Results
• Concluding remarks

Matteo Corti, 2005-03-03 6

Structure: SeparatedStructure: Separated ApproachApproach

semantic
analysis

HW-level
analysis

binary

annotated
binary

WCET

Matteo Corti, 2005-03-03 7

Semantic AnalysisSemantic Analysis
Java bytecode

Structural analysis
Partial abstract interpretation

Loop iteration bounds
Block iteration bounds

Call graph analysis

Annotated assembler

Matteo Corti, 2005-03-03 8

Structural AnalysisStructural Analysis
• Powerful interval analysis
• Recognizes semantic

constructs
• Useful when the source

code is not available
• Iteratively matches the

blocks with predefined
patterns

Matteo Corti, 2005-03-03 9

Abstract InterpretationAbstract Interpretation
• We perform a limited abstract interpretation

pass over linear code segments.
• We discover some false paths (not

containing cycles).
• We gather information on possible variables’

values. void foo(int i) {
 if (i > 0) {

 for(;i<10;i++) {
 bar();
 }
 }
}

!

i" 1..MAX_INT[]

Matteo Corti, 2005-03-03 10

Loop Iteration BoundsLoop Iteration Bounds
• Bounds on the loop header computed

similarly to C. Healy [RTAS’98].

• Each loop is handled in isolation by
analyzing the behavior of induction variables.
– we consider integer local variables
– we handle loops with several induction variables

and multiple exit points
– computes the minimal and maximal number of

iterations for each loop header

Matteo Corti, 2005-03-03 11

Loop Header IterationsLoop Header Iterations

[101]

[101][101]

[101]

[50] [50]

[100]

• The bounds on the iterations of the header
are safe for the whole loop.

• But: some parts of the loop could be
executed less frequently:

for(int i=0; i<100; i++) {
 if (i < 50) {
 A;
 } else {
 B;
 }
}

A B

[101]

[1]

[100]

Matteo Corti, 2005-03-03 12

Block IterationsBlock Iterations
• Block iterations are computed

using the CFG root and the
iteration branches.

• The header and the type of the
biggest semantic region that
includes all the predecessors of
a node determine its number of
iterations.

P0

B

H

P1

Matteo Corti, 2005-03-03 13

ExampleExample
void foo() {

 int i,j;

 for(i=0; i<100; i++) {

 if (i < 50) {

 for(j=0; j<10; j++)
 ;

 }

 }

}

[1]

[101]

[550]

[100]

[50]

[500]

[1]

Matteo Corti, 2005-03-03 14

Contributions (Semantic Analysis)Contributions (Semantic Analysis)
• We compute bounds on the iterations of

basic blocks in quadratic time:
– Structural analysis: O(B2)
– Loop bounds: O(B)
– Block bounds: O(B)

• Related work
– Automatically detected value-dependent

constraints [Healy, RTAS’99]:
– Abstract interpretation based approaches

Matteo Corti, 2005-03-03 15

OutlineOutline
• Goal and thesis
• Semantic analysis
• Hardware-level analysis
• Environment
• Results
• Concluding remarks

Matteo Corti, 2005-03-03 16

Instruction Duration EstimationInstruction Duration Estimation
• Goal: compute the duration of the single

instructions
• The maximum number of iteration for each

instruction is known
• The duration depends on the context
• Limited computational context:

We assume that the effects on the pipeline
and caches of an instruction fade over time.

Matteo Corti, 2005-03-03 17

Partial TracesPartial Traces
• the last n instructions before

the instruction i on a given trace
• n is determined experimentally

(50-100 instructions)

i

Matteo Corti, 2005-03-03 18

WCET EstimationWCET Estimation
• For every partial trace:

– CPU behavior simulation (cycle precise)
– duration according to the context

• We account for all the incoming partial
traces (contexts) according to their iteration
counts

• Block duration = ∑ instruction durations
• WCET = longest path

Matteo Corti, 2005-03-03 19

Data CachesData Caches
• Partial traces are too short to gather enough

information on data caches

• Data caches are not simulated but estimated
using run-time statistics

• The average frequency of data cache
misses is measured with a set of test runs
of the program

Matteo Corti, 2005-03-03 20

Structure: SeparatedStructure: Separated ApproachApproach

semantic
analysis

HW-level
analysis

run-time
monitor

binary

annotated
binary

WCET
cache

behavior

Matteo Corti, 2005-03-03 21

ApproximationApproximation
• We approximate the duration of single

instructions.
• We do not approximate the number of times

an instruction is executed.

• Inaccuracies are only due to cache and
pipeline effects.

• No severe WCET underestimations are
possible.

Matteo Corti, 2005-03-03 22

Contributions (HW-level Analysis)Contributions (HW-level Analysis)
• Partial traces evaluation

– O(B)
– analyze the instructions in their context
– approximates the effects of instructions

over time
– includes run-time data for the analysis of

data caches
• Related work

– abstract interpretation based
– data flow analyses

Matteo Corti, 2005-03-03 23

OutlineOutline
• Goal and thesis
• Semantic analysis
• Hardware-level analysis
• Environment
• Results
• Concluding remarks

Matteo Corti, 2005-03-03 24

EnvironmentEnvironment
• Java ahead-of-time bytecode to native

compiler
• Linux
• Intel Pentium Pro family

• Semantic analysis: language independent
• Hardware-level analysis: architecture

independent

Matteo Corti, 2005-03-03 25

OutlineOutline
• Goal and thesis
• Semantic analysis
• Hardware-level analysis
• Environment
• Results
• Concluding remarks

Matteo Corti, 2005-03-03 26

EvaluationEvaluation
• It is not possible to test the whole input

space to determine the WCET
experimentally.

• small applications: known algorithm, the
WCET can be forced at run time

• big applications: several runs with random
input

Matteo Corti, 2005-03-03 27

Results Results –– Small Kernels Small Kernels

[cycles][cycles]

9%1.40·10101.29·10104Sieve

10%1.55·1091.42·10911MatrixInversion

2%2.73·1092.67·1096MatMult

78%2.48·1081.39·1084JanneComplex

22%1.08·10100.88·10105Jacobi

86%2.38·1081.28·1083ExpInt

10%1.55·1091.40·1092Division

67%1.53·10109.16·1094BubbleSort

Overestimation
EstimatedMeasured

LoopsBenchmark

Matteo Corti, 2005-03-03 28

Results Results –– Application Benchmarks Application Benchmarks

13%2.11·1091.86·1091471Whetstone

538%1.22·10111.91·101043439SciMark

94%2.72·10101.40·101024171Linpack

94%1.18·10106.09·10911720263JavaLayer

46%1.05·10107.20·109174313_201_compress

[cycles][cycles]
Over-

estimation

EstimatedObservedLoops

M
ethods

C
lasses

Program

Matteo Corti, 2005-03-03 29

OutlineOutline
• Goal and thesis
• Semantic analysis
• Hardware-level analysis
• Environment
• Results
• Concluding remarks

Matteo Corti, 2005-03-03 30

ConclusionsConclusions
• Semantic analysis

– fast partial abstract interpretation pass
– scalable block iterations bounding algorithm

taking into consideration different path
frequencies inside loop bodies

– no restrictions on the analyzed code
• Hardware-level analysis

– instruction duration analyzed in the execution
context

– architecture independent

