
Approximation of Worst-case
Execution Time for Preemptive

Multitasking Systems

Matteo Corti, Roberto Brega, Thomas Gross

ETH Zurich

Matteo Corti, ETH Zurich, LCTES 2000 2

Outline

• Environment

• Other approaches

• Worst-case execution time approximation

• Results

• Conclusions

Matteo Corti, ETH Zurich, LCTES 2000 3

Environment: User Needs

• Complex mechatronic applications

• Timing correctness

• Concurrency (RT and non-RT tasks)

• Rapid development: dynamic system

• Modern programming languages

• Modern processors

Matteo Corti, ETH Zurich, LCTES 2000 4

Environment: System

• XOberon:

– Loading/unloading of modules (tasks) at runtime

– Deadline driven scheduler with admission testing

– Resources are shared between RT and non-RT tasks

– Preemptive scheduling

• Modern RISC processors: PowerPC 604e

• Modern language: Oberon-2

– Automatic garbage collection

– Strong type checking

Matteo Corti, ETH Zurich, LCTES 2000 5

Problem Description

• Admission test
– deadline: determined by the problem

– max. duration: determined by the task and the
system

• Preemptive scheduling and processor
complexity hinder a precise computation of
the worst-case execution time (WCET)

• The system is able to stop safely if the given
duration is to small (w/o damaging the robot
or the operator)

Matteo Corti, ETH Zurich, LCTES 2000 6

Issues

• Static program analysis

– automatic loop bounding

– false paths

– infeasible paths

• Instruction length computation

– caches (instruction and data)

– pipelines

Matteo Corti, ETH Zurich, LCTES 2000 7

Other approaches

• Longest path:
– user annotations

– automatic tools (loop bounding, false paths, …)

• Instruction length (w/o preemption):
– cache prediction

– active cache management

– pipelines prediction

• Dynamic systems:
– trial-and-error experimentation

Matteo Corti, ETH Zurich, LCTES 2000 8

Predictor Structure

Source

Object

WCET

Compiler

Compiler

Target

Host Run-time
statistics

Performance
Monitor

Matteo Corti, ETH Zurich, LCTES 2000 9

Longest Path ...

instr op op op
instr op op op
instr op op op
instr op op op
br addr

∑⋅=
instr

instrbb lengthiterlen

Matteo Corti, ETH Zurich, LCTES 2000 10

Block Iterations

• Static program analysis

– loop iteration bounds

• Real-time tasks are relatively well structured
�minimal compiler support

– automatic loop bounding for simple loops

– user annotations (driver calls, difficult loops,
polymorphism, library calls)

– user hints can be checked at run-time

Matteo Corti, ETH Zurich, LCTES 2000 11

Instruction Length

• Preemption, dynamic set of processes � no exact
knowledge of the cache and pipeline status

• Maximal instruction lengths (caches are always
empty, instructions always stall, ...) are not useful:
the WCET is too high to be used in practice

• Instruction length approximation using run-time
information about the processor usage during the
task’s execution

Matteo Corti, ETH Zurich, LCTES 2000 12

Performance Monitor ...

• The PowerPC 604e provides hardware
assist to monitor and count predefined
events (cache misses, mispredicted
branches, issued instructions, …)

• Processes can be marked for runtime
profiling

• Events book-keeping is done in the scheduler
(small overhead)

• No code instrumentation

Matteo Corti, ETH Zurich, LCTES 2000 13

Performance Monitor

• Not specifically designed to help in program
analysis:
– event counting is not precise (out-of-order

execution)

– many events are not disjoint

– only four different events can be monitored in
parallel

• The instruction length must be
approximated dealing with the
performance monitor (PM) inaccuracies

Matteo Corti, ETH Zurich, LCTES 2000 14

Statistics Gathering

• Problem: choose representative traces

• Solution:

– profile different input sets

– conservative approximation

• The tests confirmed a certain homogeneity
within different execution traces for the
same tasks

Matteo Corti, ETH Zurich, LCTES 2000 15

Cycles Per Instruction (CPI) …
• The instruction length can be divided in
several components:
– ICP: infinite cache performance (CPU busy and stall time)

– FCE: finite cache performance (effects of memory
hierarchy)

FCEstall
mparallelis

stallexec
CPI pipeline

unitunit +++=

FCEICPCPI +=

FCEstallbusyCPI ++=

...=CPI

Matteo Corti, ETH Zurich, LCTES 2000 16

Cycles Per Instruction (CPI)

• Instruction length components:

– From the processor architecture

• execution time

• miss penalty

– Estimated with help of run-time data

• stalls

• cache misses

• instruction parallelism

– Estimated by the program structure

• distance between instructions of the same type

Matteo Corti, ETH Zurich, LCTES 2000 17

Testing the Predictor

• First phase: approximation tuning

– simple tests with known WCET (matrix
multiplication, Runge-Kutta, …)

– different components of the approximator and of
the processor can be tested separately

• Second phase: real applications

– longest path and exact WCET unknown

– not all the paths can be tested

Matteo Corti, ETH Zurich, LCTES 2000 18

Results: Simple Tests

0

500

1000

1500

2000

2500

3000

Matrix
Mult.

Matrix
Mult. FP

Arra
y Max

Arra
y Max FP

Runge-Kutta

Polynomial Eval

Distr ib
ution Count

ms

WCET Approximation

+11% +6% +7%
-5%

+13%

-5%

+8%

Matteo Corti, ETH Zurich, LCTES 2000 19

Results: Approximations

1188 ms555 ms311 msFull predictor

Pol. Eval.Array Max.

3193 ms

1252 ms

Matr. Mul.

1901 ms1403 msNo cache hits

520 ms280 msMeasured value

Test

• Worst case assumptions about caches and pipeline
produce non usable durations

• Example: no cache approximation (but all other
included)

Matteo Corti, ETH Zurich, LCTES 2000 20

Results: Real Applications

• LaserPointer: laboratory
machine that moves a laser pen
applied on the tool-center point of
a 2-joints manipulator

• Hexaglide: a parallel manipulator
with 6 DOF used as a high speed
milling machine

• Robojet: a hydraulically
actuated manipulator used in the
construction of tunnels

Matteo Corti, ETH Zurich, LCTES 2000 21

Results: Real Applications

User annotationsApplication

1600 LOC0 / 20717Robojet

2200 LOC2 / 2584Hexaglide

1000 LOC0 / N.a.5LaserPointer

Code Size

BoundsCalls

• Only a few loops had to be manually
bounded

Matteo Corti, ETH Zurich, LCTES 2000 22

Results: Real Applications

0

200

400

600

800

1000

1200

LaserP
ointe

r.t
1

LaserP
ointe

r.t
2

LaserP
ointe

r.t
3

Hexaglid
e.t1

Hexaglid
e.t2

Robojet.t
1

Robojet.t
2

Robojet.t
3

µs

Measured Predicted

-1%
+57%

+46%

+0.3%

0%

+17%
+11%

0%

Matteo Corti, ETH Zurich, LCTES 2000 23

Comments …

• Performance monitors are not designed to
help in program analysis (coarse-grain
information)

• Many CPI components are gathered using
statistical methods

• There is no hard guarantee the result is
correct

• Architecture dependent (different
performance monitors, and processor
architectures)

Matteo Corti, ETH Zurich, LCTES 2000 24

Comments

• Simple approach: minimal user interaction
needed (suitable for application experts)

• No special hardware tools needed

• Useful in complex environments with
preemptive multitasking (dynamic
constellation of real-time tasks)

• Big and real applications can be analyzed

Matteo Corti, ETH Zurich, LCTES 2000 25

Conclusions

• The WCET can be approximated using
run-time data
– little or no user assistance is required

• Processor’s performance monitors can
help in program analysis
–better support desirable

• Approximations are good enough for
many dynamic real-time systems

