

Instruction Duration Estimation by Partial Trace Evaluation

Matteo Corti, Thomas Gross

Goal

- Tight, conservative **WCET** approximation.
- Large non-safety-critical applications.
- Modern CPUs:
 - complex pipelines, caches and branch prediction
 - preemptive system
- ERCO:
 - ahead-of-time Java to native compiler
 - semantic analyzer
 - instruction duration estimator

Input

- Assembler file with semantic information
- Control flow graph
- Maximum number of iterations for each block
- Dynamic and static call targets (call graph)
- False paths

Instruction Duration

- Goal: compute the duration of the single instructions.
- The duration depends on the context.
- Limited computational context:

We assume that the effects on the pipeline and caches of an instruction fade over time.

Locality: Limited Context

• Partial trace / context:

the last *n* instructions before the instruction *i* on a given trace

 n is determined experimentally (50-100 instructions)

Estimated Instruction Duration

- For every partial trace:
 - -CPU behavior simulation
 - -duration according to the context
- We account for all the incoming paths (contexts) according to their iteration counts.
- Block duration = \sum instruction durations
- WCET = longest path (CFG)

Results: Small Kernels

Benchmark	Estimated	Measured	
Division	1.545·10 ⁹	1.400·10 ⁹	10.351%
Jacobi	1.075·10 ¹⁰	8.788·10 ⁹	22.351%
MatrixInversion	1.553·10 ⁹	1.419·10 ⁹	9.402%
MatrixMult	2.732·10 ⁹	2.667·10 ⁹	2.448%

 Increasing the partial trace length does not change the results

Results: Applications

Benchmark	Measured	Observed	
_201_compress	9.45·10 ⁹	1.11·10 ¹⁰	117%
javalayer	2.67·10 ⁹	1.30·10 ¹⁰	487%
scimark2	2.47·10 ¹⁰	1.42·10 ¹¹	579%

Conclusions

- Asymptotically **linear time estimation** of the instruction duration.
- Can be adapted to different CPU/architectures and semantic analyzers.
- Working prototype delivering fair estimations.
- Room for improvement in the CPU simulation.